# Loop Tiling¶

In this section, we discuss RAJA statements that can be used to tile nested loops. Typical loop tiling involves partitioning an iteration space into a collection of “tiles” and then iterating over tiles in outer loops and indices within each tile in inner loops. Many scientific computing algorithms can benefit from loop tiling due to more efficient cache usage on a CPU or use of GPU shared memory.

For example, consider an operation performed using a C-style for-loop with a range of [0, 10):

for (int i=0; i<10; ++i) {
// loop body using index 'i'
}


This May be written as a loop nest that iterates over five tiles of size two:

int numTiles = 5;
int tileDim  = 2;
for (int t=0; t<numTiles; ++t) {
for (int j=0; j<tileDim; ++j) {
int i = j + tileDim*t; // Calculate global index 'i'
// loop body using index 'i'
}
}


Next, we show how loop tiling can be written using RAJA with variations that use different RAJA::kernel execution policy statement types.

Here is a way to write the tiled loop kernel above using RAJA::kernel:

using KERNEL_EXEC_POL =
RAJA::KernelPolicy<
RAJA::statement::Tile<0, RAJA::tile_fixed<2>, RAJA::seq_exec,
RAJA::statement::For<0, RAJA::seq_exec,
RAJA::statement::Lambda<0>
>
>
>;

RAJA::kernel<KERNEL_EXEC_POL>(
RAJA::make_tuple(RAJA::TypedRangeSegment<int>(0,10)),
[=] (int i) {
// kernel body using index 'i'
}
);


In RAJA kernel, the simplest way to tile an iteration space is to use RAJA::statement::Tile and RAJA::statement::For statement types. A RAJA::statement::Tile type is similar to a RAJA::statement::For type, but takes a tile size as the second template argument. The RAJA::statement::Tile type generates the outer loop over tiles and the RAJA::statement::For type iterates over each tile. Nested together, these statements will pass the global index (‘i’ in the example) to the lambda expression as (kernel body) in a non-tiled version above.

Note

When using RAJA::statement::Tile and RAJA::statement::For types together to define a tiled loop structure, the integer passed as the first template argument to each statement type must be the same. This indicates that they both apply to the same iteration space in the space tuple passed to the RAJA::kernel method.

The RAJA::launch API also supports loop tiling through specialized

methods. The launch version of the code above is

using launch_t = RAJA::LaunchPolicy<RAJA::seq_launch>;
using loop_t   = RAJA::LoopPolicy<RAJA::loop_exec>;

RAJA::launch<launch_t>(
RAJA::LaunchParams(), RAJA_HOST_DEVICE(RAJA::launchContext ctx) {

RAJA::tile<loop_t>(
ctx, tile_size, RAJA::TypedRangeSegment<int>(0, 10), [&] (RAJA::TypedRangeSegment<int> const &tile) {

RAJA::loop<loop_t>(
ctx, tile, [&] (int i) {

// kernel body using index 'i'

}
);
}
);
}
);


In the example above the RAJA::tile method is used to generate a tile in the larger iteration space.

This approach requires source code changes if the developer wanted to remove tiling, while RAJA kernel enables switching between tiling and non-tiling via execution policies and recompilation. Tile size in RAJA::launch can be be selected dynamically and tiles are created on the device.

In both kernel and launch RAJA also provides alternative statements that provide the tile number and local tile index. Using RAJA kernel, we illustrate usage below:

using KERNEL_EXEC_POL2 =
RAJA::KernelPolicy<
RAJA::statement::TileTCount<0, RAJA::statement::Param<0>,
RAJA::tile_fixed<2>, RAJA::seq_exec,
RAJA::statement::ForICount<0, RAJA::statement::Param<1>,
RAJA::seq_exec,
RAJA::statement::Lambda<0>
>
>
>;

RAJA::kernel_param<KERNEL_EXEC_POL2>(
RAJA::make_tuple(RAJA::TypedRangeSegment<int>(0,10)),
RAJA::make_tuple((int)0, (int)0),
[=](int i, int t, int j) {

// i - global index
// t - tile number
// j - index within tile
// Then, i = j + 2*t (2 is tile size)

}
);


The RAJA::statement::TileTCount type indicates that the tile number will be passed to the lambda expression and the RAJA::statement::ForICount type indicates that the local tile loop index will be passed to the lambda expression. Storage for these values is specified in the parameter tuple, the second argument passed to the RAJA::kernel_param method. The RAJA::statement::Param<#> type appearing as the second template parameter for each statement type indicates which parameter tuple entry, the tile number or local tile loop index, is passed to the lambda and in which order. Here, the tile number is the second lambda argument (tuple parameter ‘0’) and the local tile loop index is the third lambda argument (tuple parameter ‘1’).

Note

The global loop indices always appear as the first lambda expression arguments. Then, the parameter tuples identified by the integers in the RAJA::Param statement types given for the loop statement types follow.

The launch API uses RAJA::tile_tcount and RAJA::loop_icount methods which has a second argument on the lambda for the index. We illustrate usage below:

using launch_t = RAJA::LaunchPolicy<RAJA::seq_launch>;
using loop_t   = RAJA::LoopPolicy<RAJA::loop_exec>;

RAJA::launch<launch_t>(
RAJA::LaunchParams(), RAJA_HOST_DEVICE(RAJA::launchContext ctx) {

RAJA::tile_tcount<loop_t>(
ctx, tile_size, RAJA::TypedRangeSegment<int>(0, 10), [&] (RAJA::TypedRangeSegment<int> const &tile, int t) {

RAJA::loop_icount<loop_t>(
ctx, tile, [&] (int idx, int i) {

// idx - global index
// t - tile number
// i - index within tile
// Then, idx = i + tile_size*t

}
);
}
);
}
);