
RAJA Documentation
Release 2022.03.1

LLNL

Dec 09, 2022

User Documentation

1 Background and Motivation 3

2 Git Repository and Issue Tracking 5

3 Communicating with the RAJA Team 7

4 RAJA User Documentation 9

5 RAJA Developer Documentation 11

6 RAJA Copyright and License Information 13
6.1 RAJA User Guide . 13
6.2 Doxygen . 140
6.3 RAJA Developer Guide . 140
6.4 RAJA Copyright and License Information . 151

i

ii

RAJA Documentation, Release 2022.03.1

RAJA is a software library of C++ abstractions, developed at Lawrence Livermore National Laboratory (LLNL), that
enable architecture and programming model portability for high performance computing (HPC) applications. RAJA
has two main goals:

1. To enable application portability with manageable disruption to existing algorithms and programming styles.

2. To achieve performance comparable to using common programming models (e.g., OpenMP, CUDA, etc.) di-
rectly.

RAJA targets portable, parallel loop execution by providing building blocks that extend the generally-accepted parallel
for idiom.

User Documentation 1

RAJA Documentation, Release 2022.03.1

2 User Documentation

CHAPTER 1

Background and Motivation

Many HPC applications must achieve high performance across a diverse range of computer architectures including:
Mac and Windows laptops, parallel clusters of multicore commodity processors, and large-scale supercomputers with
advanced heterogeneous node architectures that combine cutting edge CPU and accelerator (e.g., GPU) processors.
Exposing fine-grained parallelism in a portable, high performance manner on varied and potentially disruptive archi-
tectures presents significant challenges to developers of large-scale HPC applications. This is especially true at US
Department of Energy (DOE) laboratories where, for decades, large investments have been made in highly-scalable
MPI-only applications that have been in service over multiple platform generations. Often, maintaining developer and
user productivity requires the ability to build single-source application source code bases that can be readily ported to
new architectures. RAJA is one C++ abstraction layer that helps address this performance portability challenge.

RAJA provides portable abstractions for simple and complex loops – as well reductions, scans, atomic operations,
sorts, data layouts, views, and loop iteration spaces, as well as compile-time loop transformations. Features are
continually growing as new use cases arise due to expanding user adoption.

RAJA uses standard C++11 – C++ is the programming language model of choice for many HPC applications. RAJA
requirements and design are rooted in a decades of developer experience working on production mesh-based multi-
physics applications. An important RAJA requirement is that application developers can specialize RAJA concepts
for different code implementation patterns and C++ usage, since data structures and algorithms vary widely across
applications.

RAJA helps developers insulate application loop kernels from underlying architecture and programming model-
specific implementation details. Loop bodies and loop execution are decoupled using C++ lambda expressions (loop
bodies) and C++ templates (loop execution methods). This approach promotes the perspective that application devel-
opers should focus on tuning loop patterns rather than individual loops as much as possible. RAJA makes it relatively
straightforward to parameterize an application using execution policy types so that it can be compiled in a specific
configuration suitable to a given architecture.

RAJA support for various execution back-ends is the result of collaborative development between the RAJA team
and academic and industrial partners. Currently available execution back-ends include: sequential, SIMD, Threading
Building Blocks (TBB), NVIDIA CUDA, OpenMP CPU multithreading and target offload, and AMD HIP. Sequential,
CUDA, OpenMP CPU multithreading, and HIP execution are supported for all RAJA features. Sequential, OpenMP
CPU multithreading, and CUDA are considered the most developed at this point as these have been our primary focus
up to now. Those back-ends are used in a wide variety of production applications. OpenMP target offload and TBB
back-ends do not support all RAJA features and should be considered experimental.

3

https://en.wikipedia.org/wiki/SIMD
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
https://developer.nvidia.com/about-cuda
https://www.openmp.org
https://github.com/ROCm-Developer-Tools/HIP

RAJA Documentation, Release 2022.03.1

4 Chapter 1. Background and Motivation

CHAPTER 2

Git Repository and Issue Tracking

The main interaction hub for RAJA is on GitHub

5

https://github.com/LLNL/RAJA

RAJA Documentation, Release 2022.03.1

6 Chapter 2. Git Repository and Issue Tracking

CHAPTER 3

Communicating with the RAJA Team

If you have questions, find a bug, have ideas about expanding the functionality or applicability, or wish to contribute to
RAJA development, please do not hesitate to contact us. We are always interested in improving RAJA and exploring
new ways to use it.

The best way to communicate with us is via our email list: raja-dev@llnl.gov

You are also welcome to join our Google Group

A brief description of how to start a contribution to RAJA can be found in Contributing to RAJA.

7

https://groups.google.com/forum/#!forum/raja-users

RAJA Documentation, Release 2022.03.1

8 Chapter 3. Communicating with the RAJA Team

CHAPTER 4

RAJA User Documentation

• RAJA User Guide

• RAJA Tutorials Repo

• Source Documentation

9

https://github.com/LLNL/RAJA-tutorials
doxygen/html/index.html

RAJA Documentation, Release 2022.03.1

10 Chapter 4. RAJA User Documentation

CHAPTER 5

RAJA Developer Documentation

• RAJA Developer Guide

11

RAJA Documentation, Release 2022.03.1

12 Chapter 5. RAJA Developer Documentation

CHAPTER 6

RAJA Copyright and License Information

Please see RAJA Copyright and License Information.

6.1 RAJA User Guide

If you have some familiarity with RAJA and want to get up and running quickly, check out Getting Started With RAJA.
This guide contains information about accessing the RAJA code, building it, and basic RAJA usage.

If you are completely new to RAJA, please check out the RAJA Tutorial. It contains a discussion of essential C++
concepts and will walk you through a sequence of code examples that show how to use key RAJA features.

See RAJA Features for a complete, high-level description of RAJA features (like a reference guide).

Additional information about things to think about when considering whether to use RAJA in an application can be
found in Application Considerations.

6.1.1 Getting Started With RAJA

This section will help get you up and running with RAJA quickly.

Requirements

The primary requirement for using RAJA is a C++14 compliant compiler. Accessing various programming model
back-ends requires that they be supported by the compiler you chose. Available options and how to enable or disable
them are described in Build Configuration Options. To build RAJA in its most basic form and use its simplest features:

• C++ compiler with C++14 support

• CMake version 3.14.5 or greater.

13

https://cmake.org/

RAJA Documentation, Release 2022.03.1

Get the Code

The RAJA project is hosted on GitHub. To get the code, clone the repository into a local working space using the
command:

$ git clone --recursive https://github.com/LLNL/RAJA.git

The --recursive argument above is needed to pull in necessary RAJA dependencies as Git submodules. Current
RAJA dependencies are:

• BLT build system

• Camp compiler agnostic metaprogramming library

• CUB CUDA utilities library

• rocPRIM HIP parallel primitives library

You probably don’t need to know much about these other projects to start using RAJA. But, if you want to know more
about them, click on the links above.

After running the clone command, a copy of the RAJA repository will reside in a RAJA subdirectory where you ran
the clone command. You will be on the develop branch of RAJA, which is our default branch.

If you do not pass the --recursive argument to the git clone command, you can type the following commands
after cloning:

$ cd RAJA
$ git submodule init
$ git submodule update

Either way, the end result is the same and you should be good to go.

Note: Any time you switch branches in RAJA, you need to re-run the ‘git submodule update’ command to set the Git
submodules to what is used by the new branch.

Build and Install

Building and installing RAJA can be very easy or more complicated, depending on which features you want to use
and how easy it is to use your system.

Building RAJA

RAJA uses CMake to configure a build. A “bare bones” configuration looks like:

$ mkdir build-dir && cd build-dir
$ cmake -DCMAKE_INSTALL_PREFIX=/path/to/install ../

Note:

• RAJA requires a minimum CMake version of 3.14.5.

• Builds must be out-of-source. RAJA does not allow building in the source directory, so you must create a build
directory and run CMake in it.

14 Chapter 6. RAJA Copyright and License Information

https://github.com/LLNL/RAJA
https://github.com/LLNL/blt
https://github.com/LLNL/camp
https://github.com/NVlabs/cub
https://github.com/ROCmSoftwarePlatform/rocPRIM.git

RAJA Documentation, Release 2022.03.1

When you run CMake, it will generate output about the build environment (compiler and version, options, etc.). Some
RAJA features, like OpenMP support are enabled by default if, for example, the compiler supports OpenMP. These
can be disabled if desired. For a summary of RAJA configuration options, please see Build Configuration Options.

After CMake successfully completes, you compile RAJA by executing the make command in the build directory; i.e.,:

$ make

If you have access to a multi-core system, you can compile in parallel by running make -j (to build with all available
cores) or make -j N to build using N cores.

Note:

• RAJA is configured to build its unit tests by default. If you do not disable them with the appropriate CMake op-
tion (please see Build Configuration Options), you can run them after the build completes to check if everything
is built properly.

The easiest way to run the full set of RAJA tests is to type:

$ make test

in the build directory after the build completes.

You can also run individual tests by invoking test executables directly. They will be located in the test
subdirectory in the build space directory. RAJA tests use the Google Test framework, so you can also run tests
via Google Test commands.

• RAJA also contains example and tutorial exercise programs you can run if you wish. Similar to the RAJA tests,
the examples and exercises are built by default and can be disabled with CMake options (see Build Configuration
Options). The source files for these are located in the RAJA/examples and RAJA/exercises directories,
respectively. When built, the executables for the examples and exercises will be located in the bin subdirectory
in the build space directory. Feel free to experiment by editing the source files and recompiling.

Note: You may use externally-supplied versions of the camp, CUB, and rocPRIM libraries with RAJA if you wish.
To do so, pass the following options to CMake:

• External camp: -DEXTERNAL_CAMP_SOURCE_DIR=<camp dir name>

• External CUB: -DRAJA_ENABLE_EXTERNAL_CUB=On -DCUB_DIR=<CUB dir name>

• External rocPRIM: -DRAJA_ENABLE_EXTERNAL_ROCPRIM=On -DROCPRIM_DIR=<rocPRIM
dir name>

GPU Builds, etc.

CUDA

To run RAJA code on NVIDIA GPUs, one typically must have a CUDA compiler installed on your system, in addition
to a host code compiler. You may need to specify both when you run CMake. The host compiler is specified using the
CMAKE_CXX_COMPILER CMake variable. The CUDA compiler is specified with the CMAKE_CUDA_COMPILER
variable.

When using the NVIDIA nvcc compiler for RAJA CUDA functionality, the variables:

6.1. RAJA User Guide 15

https://github.com/google/googletest

RAJA Documentation, Release 2022.03.1

• CMAKE_CUDA_FLAGS_RELEASE

• CMAKE_CUDA_FLAGS_DEBUG

• CMAKE_CUDA_FLAGS_RELWITHDEBINFO

which corresponding to the standard CMake build types are used to pass flags to nvcc.

Note: When nvcc must pass options to the host compiler, the arguments can be included using these CMake variables.
Host compiler options must be prepended with the -Xcompiler directive.

To set the CUDA compute architecture for the nvcc compiler, which should be chosen based on the NVIDIA GPU
hardware you are using, you can use the CUDA_ARCH CMake variable. For example, the CMake option:

-DCUDA_ARCH=sm_60

will tell the compiler to use the sm_60 SASS architecture in its second stage of compilation. It will pick the PTX
architecture to use in the first stage of compilation that is suitable for the SASS architecture you specify.

Alternatively, you may specify the PTX and SASS architectures, using appropriate nvcc options in the
CMAKE_CUDA_FLAGS_* variables.

Note: RAJA requires a minimum CUDA architecture level of ‘sm_35‘ to use all supported CUDA features.
Mostly, the architecture level affects which RAJA CUDA atomic operations are available and how they are imple-
mented inside RAJA. This is described in Atomics.

• If you do not specify a value for CUDA_ARCH, it will be set to sm_35 by default and CMake will emit a status
message indicatting this choice was made.

• If you give a CUDA_ARCH value less than sm_35 (e.g., sm_30), CMake will report this and stop processing.

Also, RAJA relies on the CUB CUDA utilities library for some CUDA functionality. The CUB included in the
CUDA toolkit is used by default if available. RAJA includes a CUB submodule that is used if it is not available.
To use an external CUB install provide the following option to CMake: -DRAJA_ENABLE_EXTERNAL_CUB=On
-DCUB_DIR=<pat/to/cub>.

Note: **It is important to note that the CUDA toolkit version of cub is required for compatibility with the CUDA
toolkit version of thrust starting with CUDA toolkit version v11.0.0. So, if you build RAJA with CUDA version 11 or
higher you must use the CUDA toolkit version of CUB to use Thrust and be compatible with libraries that use Thrust.

*It is important to note that the version of Googletest that is used in RAJA version v0.11.0 or newer requires CUDA
version 9.2.x or newer when compiling with nvcc. Thus, if you build RAJA with CUDA enabled and want to also
enable RAJA tests, you must use CUDA version 9.2.x or newer.

HIP

To run RAJA code on AMD GPUs, one typically uses the HIP compiler and tool chain (which can also be used to
compile code for NVIDIA GPUs).

Note: RAJA requires version 3.5 or newer of the ROCm software stack to use the RAJA HIP back-end.

16 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Also, RAJA relies on the rocPRIM HIP utilities library for some HIP functionality. The rocPRIM in-
cluded in the ROCm install is used by default if available. RAJA includes a rocPRIM submodule that is
used if it is not available. To use an external rocPRIM install provide the following option to CMake:
-DRAJA_ENABLE_EXTERNAL_ROCPRIM=On -DROCPRIM_DIR=<pat/to/rocPRIM>.

Note: When using HIP and targeting NVIDIA GPUs RAJA uses CUB instead of rocPRIM. In this case you must use
an external CUB install using the CMake variables described in the CUDA section.

OpenMP

To use OpenMP target offlad GPU execution, additional options may need to be passed to the compiler. The variable
OpenMP_CXX_FLAGS is used for this. Option syntax follows the CMake list pattern. For example, to specify
OpenMP target options for NVIDIA GPUs using a clang-based compiler, one may do something like:

cmake \
....
-DOpenMP_CXX_FLAGS="-fopenmp;-fopenmp-targets=nvptx64-nvidia-cuda"

RAJA Example Build Configuration Files

The RAJA/scripts directory contains subdirectories with a variety of build scripts we use to build and test RAJA
on various platforms with various compilers. These scripts pass files (CMake cache files) located in the RAJA/
host-configs directory to CMake using the ‘-C’ option. These files serve as useful examples of how to configure
RAJA prior to compilation.

Installing RAJA

To install RAJA as a library, run the following command in your build directory:

$ make install

This will copy RAJA header files to the include directory and the RAJA library will be installed in the lib directory
you specified using the -DCMAKE_INSTALL_PREFIX CMake option.

Learning to Use RAJA

If you want to view and run a very simple RAJA example code, a good place to start is located in the file: RAJA/
examples/daxpy.cpp. After building RAJA with the options you select, the executable for this code will reside in
the file: <build-dir>/examples/bin/daxpy. Simply type the name of the executable in your build directory
to run it; i.e.,:

$./examples/bin/daxpy

The RAJA/examples directory also contains many other RAJA example codes you can run and experiment with.

For an overview of all the main RAJA features, see RAJA Features. A full tutorial with a variety of examples showing
how to use RAJA features can be found in RAJA Tutorial.

6.1. RAJA User Guide 17

RAJA Documentation, Release 2022.03.1

6.1.2 RAJA Features

The following sections describe key aspects of the main RAJA features.

Elements of Loop Execution

In this section, we describe the basic elements of RAJA loop kernel execution. RAJA::forall, RAJA::kernel,
and RAJA::expt::launch (aka RAJA Teams) template methods comprise the RAJA interface for loop execution.
RAJA::forall methods execute simple, non-nested loops, RAJA::kernel methods support nested loops and
other complex loop kernels and transformations, and RAJA::expt::launch creates an execution space in which
algorithms are expressed in terms of nested loops using the RAJA::expt::loop method.

Note:

• The forall , and kernel methods are in the namespace RAJA, while launch is found under the RAJA
namespace for experimental features RAJA::expt.

• A RAJA::forall loop execution method is a template on an execution policy type. A RAJA::forall
method takes two arguments:

– an iteration space object, such as a contiguous range of loop indices, and

– a single lambda expression representing the loop body.

• Each RAJA::kernel method is a template on a policy that contains statements with execution policy types
appropriate for the kernel structure; e.g., an execution policy for each level in a loop nest. A RAJA::kernel
method takes multiple arguments:

– a tuple of iteration space objects, and

– one or more lambda expressions representing portions of the loop kernel body.

• The RAJA::expt::launch method is a template on both host and device policies to create an execution
space for kernels. Since both host and device poilices are specified, the launch method can be used to select at
run-time whether to run a kernel on the host or device. Algorithms are expressed inside the execution space as
nested loops using RAJA::loop methods.

– Hierarchical parallelism can be expressed using the thread and thread-team model with
RAJA::expt::loop methods as found in programming models such as CUDA/HIP.

Various examples showing how to use RAJA::forall, RAJA::kernel, RAJA::launchmethods may be found
in the RAJA Tutorial.

For more information on RAJA execution policies and iteration space constructs, see Policies and Indices, Segments,
and IndexSets, respectively.

Simple Loops (RAJA::forall)

As noted earlier, a RAJA::forall template executes simple (i.e., non-nested) loops. For example, a C-style loop
that adds two vectors, like this:

for (int i = 0; i < N; ++i) {
c[i] = a[i] + b[i];

}

may be written using RAJA as:

18 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

RAJA::forall<exec_policy>(RAJA::RangeSegment(0, N), [=] (int i) {
c[i] = a[i] + b[i];

});

A RAJA::forall method is a template on an execution policy type and takes two arguments: an object describing
the loop iteration space, such as a RAJA range segment (shown here), and a lambda expression for the loop body.
Applying different loop execution policies enables the loop to run in different ways; e.g., using different programming
model back-ends. Different iteration space objects enable the loop iterates to be partitioned, reordered, run in different
threads, etc.

Note: Changing loop execution policy types and iteration space constructs enables loops to run in different ways by
recompiling the code and without modifying the loop kernel code.

While loop execution using RAJA::forall methods is a subset of RAJA::kernel functionality, described next,
we maintain the RAJA::forall interface for simple loop execution because the syntax is simpler and less verbose
for that use case.

Note: Data arrays in lambda expressions used with RAJA are typically RAJA Views (see View and Layout) or bare
pointers as shown in the code snippets above. Using something like ‘std::vector’ is non-portable (won’t work in
GPU kernels, generally) and would add excessive overhead for copying data into the lambda data environment when
captured by value.

Complex Loops (RAJA::kernel)

A RAJA::kernel template provides ways to compose and execute arbitrary loop nests and other complex kernels.
To introduce the RAJA kernel interface, consider a (N+1)-level C-style loop nest:

for (int iN = 0; iN < NN; ++iN) {
...

for (int i0 = 0; i0 < N0; ++i0) {s
\\ inner loop body

}
}

Note that we could write this by nesting RAJA::forall statements and it would work for some execution policy
choices:

RAJA::forall<exec_policyN>(IN, [=] (int iN) {
...

RAJA::forall<exec_policy0>(I0, [=] (int i0)) {
\\ inner loop body

}
...

}

However, this approach treats each loop level as an independent entity. This makes it difficult to parallelize the levels
in the loop nest together. So it may limit the amount of parallelism that can be exposed and the types of parallelism
that may be used. For example, if an OpenMP or CUDA parallel execution policy is used on the outermost loop, then
all inner loops would be run sequentially in each thread. It also makes it difficult to perform transformations like loop
interchange and loop collapse without changing the source code, which breaks RAJA encapsulation.

6.1. RAJA User Guide 19

RAJA Documentation, Release 2022.03.1

Note: We do not recommend nesting ‘‘RAJA::forall‘‘ statements.

The RAJA kernel interface facilitates parallel execution and compile-time transformation of arbitrary loop nests and
other complex loop structures. It can treat a complex loop structure as a single entity, which simplifies the ability
to transform and apply different parallel execution patterns by changing the execution policy type and not the kernel
code.

The loop above nest may be written using the RAJA kernel interface as:

using KERNEL_POL =
RAJA::KernelPolicy< RAJA::statement::For<N, exec_policyN,

...
RAJA::statement::For<0, exec_policy0,
RAJA::statement::Lambda<0>

>
...

>
>;

RAJA::kernel< KERNEL_POL >(
RAJA::make_tuple(RAJA::RangeSegment(0, NN), ..., RAJA::RangeSegment(0, N0),

[=] (int iN, ... , int i0) {
// inner loop body

}

);

A RAJA::kernelmethod takes a RAJA::KernelPolicy type template parameter, and a tuple of iteration spaces
and a sequence of lambda expressions as arguments.

In the case we discuss here, the execution policy contains a nested sequence of RAJA::statement::For state-
ments, one for each level in the loop nest. Each For statement takes three template parameters:

• an integral index parameter that binds the For statement to the item in the iteration space tuple corresponding
to that index,

• an execution policy type for the associated loop nest level, and

• an enclosed statement list (described in RAJA Kernel Execution Policies).

Note: The nesting of RAJA::statement::For types is analogous to the nesting of for-statements in the C-style
version of the loop nest. One can think of the ‘<, >’ symbols enclosing the template parameter lists as being similar to
the curly braces in C-style code.

Here, the innermost type in the kernel policy is a RAJA::statement::Lambda<0> type indicating that the first
lambda expression (argument zero of the sequence of lambdas passed to the RAJA::kernel method) will com-
prise the inner loop body. We only have one lambda in this example but, in general, we can have any number of
lambdas and we can use any subset of them, with RAJA::statement::Lambda types placed appropriately in the
execution policy, to construct a loop kernel. For example, placing RAJA::statement::Lambda types between
RAJA::statement::For statements enables non-perfectly nested loops.

RAJA offers two types of lambda statements. The first as illustratated above, requires that each lambda expression
passed to a RAJA::kernel method must take an index argument for each iteration space in the tuple. With
this type of lambda statement, the entire iteration space must be active in a containing For construct. A compile time
static_assert will be triggered if any of the arguments are undefined, indicating that something is not correct.

20 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

The second type of lambda statement, an extension of the first, takes additional template parameters which specify
which iteration space indices are passed as lambda arguments. The result is that a kernel lambda only needs to accept
iteration space index arguments that are used in the lambda body.

The kernel policy list with lambda arguments may be written as:

using KERNEL_POL =
RAJA::KernelPolicy< RAJA::statement::For<N, exec_policyN,

...
RAJA::statement::For<0, exec_policy0,
RAJA::statement::Lambda<0, RAJA::Segs<N,...,0>>

>
...

>
>;

The template parameter RAJA::Segs is used to specify which elements in the segment tuple are used to pass argu-
ments to a lambda. RAJA offers other types such as RAJA::Offsets, and RAJA::Params to identify offsets and
parameters in segments and param tuples respectively to be used as lambda argumentsx. See Matrix Multiplication
(Nested Loops) and Matrix Transpose with Local Array for detailed examples.

Note: Unless lambda arguments are specified in RAJA lambda statements, the loop index arguments for each lambda
expression used in a RAJA kernel loop body must match the contents of the iteration space tuple in number, order,
and type. Not all index arguments must be used in a lambda, but they all must appear in the lambda argument list and
all must be in active loops to be well-formed. In particular, your code will not compile if this is not done correctly.
If an argument is unused in a lambda expression, you may include its type and omit its name in the argument list to
avoid compiler warnings just as one would do for a regular C++ method with unused arguments.

For RAJA nested loops implemented with RAJA::kernel, as shown here, the loop nest ordering is determined by
the order of the nested policies, starting with the outermost loop and ending with the innermost loop.

Note: The integer value that appears as the first parameter in each RAJA::statement::For template indicates
which iteration space tuple entry or lambda index argument it corresponds to. This allows loop nesting order to be
changed simply by changing the ordering of the nested policy statements. This is analogous to changing the order
of ‘for-loop’ statements in C-style nested loop code.

See Basic RAJA::kernel Variants for a complete example showing RAJA nested loop functionality and Nested Loop
Interchange for a detailed example describing nested loop reordering.

Note: In general, RAJA execution policies for RAJA::forall and RAJA::kernel are different. A summary of
all RAJA execution policies that may be used with RAJA::forall or RAJA::kernel may be found in Policies.

Finally, a discussion of how to construct RAJA::KernelPolicy types and available RAJA::statement types
can be found in RAJA Kernel Execution Policies.

Team based loops (RAJA::launch)

The RAJA Teams framework aims to unify thread/block based programming models such as CUDA/HIP/SYCL while
maintaining portability on host backends (OpenMP, sequential). When using the RAJA::kernel interface, develop-
ers express all aspects of nested loop execution in the execution policy type on which the RAJA::kernel method is
templated. In contrast, the RAJA::launch interface allows users to express nested loop execution in a manner that

6.1. RAJA User Guide 21

RAJA Documentation, Release 2022.03.1

more closely reflects how one would write conventional nested C-style for-loop code. Additionally, RAJA Teams intro-
duces run-time host or device selectable kernel execution. The main application of RAJA Teams is imperfectly nested
loops. Using the RAJA::expt::launch method developers are provided with an execution space enabling them
to express algorithms in terms of nested RAJA::expt::loop statements:

RAJA::expt::launch<launch_policy>(select_CPU_or_GPU)
RAJA::expt::Grid(RAJA::expt::Teams(NE), RAJA::expt::Threads(Q1D)),
[=] RAJA_HOST_DEVICE (RAJA::expt::Launch ctx) {

RAJA::expt::loop<team_x> (ctx, RAJA::RangeSegment(0, teamRange), [&] (int bx) {

RAJA_TEAM_SHARED double s_A[SHARE_MEM_SIZE];

RAJA::expt::loop<thread_x> (ctx, RAJA::RangeSegment(0, threadRange), [&] (int tx)
→˓{

s_A[tx] = tx;
});

ctx.teamSync();

)};

});

The underlying idea of RAJA Teams is to enable developers to express nested parallelism in terms of teams and
threads. Similar to the CUDA programming model, development is done using a collection of threads, threads are
grouped into teams. Using the RAJA::expt::loop methods iterations of the loop may be executed by threads or
teams (depending on the execution policy). The launch context serves to synchronize threads within the same team.
The RAJA Teams abstraction consist of three main concepts.

• Launch Method: creates an execution space in which developers may express their algorithm in terms of nested
RAJA::expt::loop statements. The loops are then executed by threads or thread-teams. The method is
templated on both a host and device execution space and enables run-time selection of the execution environ-
ment.

• Resources: holds a number of teams and threads (akin to CUDA blocks/threads).

• Loops: are used to express hierarchical parallelism. Work within a loop is mapped to either teams or threads.
Team shared memory is available by using the RAJA_TEAM_SHARED macro. Team shared memory enables
threads in a given team to share data. In practice, team policies are typically aliases for RAJA GPU block
policies in the x,y,z dimensions (for example cuda_block_direct), while thread policies are aliases for RAJA
GPU thread policies (for example cuda_thread_direct) x,y,z dimensions. On the host, teams and threads may be
mapped to sequential loop execution or OpenMP threaded regions.

The team loop interface combines concepts from RAJA::forall and RAJA::kernel. Various policies from
RAJA::kernel are compatible with the RAJA Teams framework.

MultiDimensional loops using Simple loop APIs (RAJA::CombiningAdapter)

A RAJA::CombiningAdapter object provides ways to run perfectly nested loops with simple loop APIs like
RAJA::forall and RAJA::WorkGroup WorkGroup. To introduce the RAJA ::CombiningAdapter inter-
face, consider a (N+1)-level C-style loop nest:

for (int iN = 0; iN < NN; ++iN) {
...

for (int i0 = 0; i0 < N0; ++i0) {

(continues on next page)

22 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

\\ inner loop body
}

}

We can use a RAJA::CombiningAdapter to combine the iteration spaces of the loops and pass the adapter to a
RAJA::forall statement to execute them:

auto adapter = RAJA::make_CombingingAdapter(
[=] (int iN, ..., int i0)) {

\\ inner loop body
}, IN, ..., I0);

RAJA::forall<exec_policy>(adapter.getRange(), adapter);

A RAJA::CombiningAdapter object is a template combining a loop body and iteration spaces. The maker
function template takes a lambda expression for the loop body and an arbitrary number of segment arguments. It
provides a flattened index space via the getRange method that can be passed as the iteration space to the simple
loop API. The object itself can be passed into the loop API as the loop body. The object’s call operator does the
conversion of the flat single dimensional index into the multi-dimensional index space, calling the provided lambda
with the appropriate indices.

Note: CombiningAdapter currently only supports RAJA::RangeSegment and RAJA::TypedRangeSegment
segments.

Policies

This section describes RAJA policies for loop kernel execution, scans, sorts, reductions, atomics, etc. Each policy is a
type that is passed to a RAJA template method or class to specialize its behavior. Typically, the policy indicates which
programming model back-end to use and sometimes specifies additional information about the execution pattern, such
as number of CUDA threads per thread block, whether execution is synchronous or asynchronous, etc.

As RAJA functionality evolves, new policies will be added and some may be redefined and to work in new ways.

Note:

• All RAJA policies are in the namespace RAJA.

• All RAJA policies have a prefix indicating the back-end implementation that they use; e.g., omp_ for OpenMP,
cuda_ for CUDA, etc.

RAJA Loop/Kernel Execution Policies

The following tables summarize RAJA policies for executing kernels. Please see notes below policy descriptions for
additional usage details and caveats.

Sequential CPU Policies

For the sequential CPU back-end, RAJA provides policies that allow developers to have some control over the opti-
mizations that compilers are allow to apply during code compilation.

6.1. RAJA User Guide 23

RAJA Documentation, Release 2022.03.1

Sequen-
tial/SIMD
Execution
Policies

Works
with

Brief description

seq_exec forall, ker-
nel (For),
scan, sort

Strictly sequential execution.

simd_exec forall, ker-
nel (For),
scan

Try to force generation of SIMD instructions via compiler hints in
RAJA’s internal implementation.

loop_exec forall, ker-
nel (For),
scan, sort

Allow the compiler to generate any optimizations that its heuristics
deem beneficial according; i.e., no loop decorations (pragmas or in-
trinsics) in RAJA implementation.

OpenMP Parallel CPU Policies

For the OpenMP CPU multithreading back-end, RAJA has policies that can be used by themselves to execute kernels.
In particular, they create an OpenMP parallel region and execute a kernel within it. To distinguish these in this
discussion, we refer to these as full policies. These policies are provided to users for convenience in common use
cases.

RAJA also provides other OpenMP policies, which we refer to as partial policies, since they need to be used in
combination with other policies. Typically, they work by providing an outer policy and an inner policy as a template
parameter to the outer policy. These give users flexibility to create more complex execution patterns.

Note: To control the number of threads used by OpenMP policies set the value of the environ-
ment variable ‘OMP_NUM_THREADS’ (which is fixed for duration of run), or call the OpenMP routine
‘omp_set_num_threads(nthreads)’ in your application, which allows one to change the number of threads at runtime.

The full policies are described in the following table. Partial policies are described in other tables below.

OpenMP CPU Full Policies Works with Brief description
omp_parallel_for_exec forall, kernel (For),

scan, sort
Same as applying ‘omp parallel for’ pragma

omp_parallel_for_static_exec<ChunkSize>forall, kernel (For) Same as applying ‘omp parallel for sched-
ule(static, ChunkSize)’

omp_parallel_for_dynamic_exec<ChunkSize>forall, kernel (For) Same as applying ‘omp parallel for sched-
ule(dynamic, ChunkSize)’

omp_parallel_for_guided_exec<ChunkSize>forall, kernel (For) Same as applying ‘omp parallel for sched-
ule(guided, ChunkSize)’

omp_parallel_for_runtime_exec forall, kernel (For) Same as applying ‘omp parallel for sched-
ule(runtime)’

Note: For the OpenMP scheduling policies above that take a ChunkSize parameter, the chunk
size is optional. If not provided, the default chunk size that OpenMP applies will be used, which
may be specific to the OpenMP implementation in use. For this case, the RAJA policy syntax is
omp_parallel_for_{static|dynamic|guided}_exec< >, which will result in the OpenMP pragma

24 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

omp parallel for schedule({static|dynamic|guided}) being applied.

RAJA provides an (outer) OpenMP CPU policy to create a parallel region in which to execute a kernel. It requires an
inner policy that defines how a kernel will execute in parallel inside the region.

OpenMP CPU
Outer Policies

Works with Brief description

omp_parallel_exec<InnerPolicy>forall, kernel
(For), scan

Creates OpenMP parallel region and requires an InnerPolicy.
Same as applying ‘omp parallel’ pragma.

Finally, we summarize the inner policies that RAJA provides for OpenMP. These policies are passed to the RAJA
omp_parallel_exec outer policy as a template argument as described above.

OpenMP CPU Inner Poli-
cies

Works with Brief description

omp_for_exec forall, kernel
(For), scan

Parallel execution within existing parallel region;
i.e., apply ‘omp for’ pragma.

omp_for_static_exec<ChunkSize>forall, kernel
(For)

Same as applying ‘omp for schedule(static, Chunk-
Size)’

omp_for_nowait_static_exec<ChunkSize>forall, kernel
(For)

Same as applying ‘omp for schedule(static, Chunk-
Size) nowait’

omp_for_dynamic_exec<ChunkSize>forall, kernel
(For)

Same as applying ‘omp for schedule(dynamic,
ChunkSize)’

omp_for_guided_exec<ChunkSize>forall, kernel
(For)

Same as applying ‘omp for schedule(guided,
ChunkSize)’

omp_for_runtime_exec forall, kernel
(For)

Same as applying ‘omp for schedule(runtime)’

Important: RAJA only provides a nowait policy option for static schedule since that is the only schedule case
that can be used with nowait and be correct in general when chaining multiple loops in a single parallel region.
Paraphrasing the OpenMP standard: programs that depend on which thread executes a particular loop iteration under
any circumstance other than static schedule are non-conforming.

Note: As in the RAJA full policies for OpenMP scheduling, the ChunkSize is optional. If not provided, the
default chunk size that the OpenMP implementation applies will be used. For this case, the RAJA policy syntax
is omp_for_{static|dynamic|guided}_exec< >, which will result in the OpenMP pragma omp for
schedule({static|dynamic|guided}) being applied. Similarly, for nowait static policy, the RAJA
policy syntax is omp_for_nowait_static_exec< >, which will result in the OpenMP pragma omp for
schedule(static) nowait being applied.

Note: As noted above, RAJA inner OpenMP policies must only be used within an existing parallel region to work
properly. Embedding an inner policy inside the RAJA outer omp_parallel_exec will allow you to apply the
OpenMP execution prescription specified by the policies to a single kernel. To support use cases with multiple kernels
inside an OpenMP parallel region, RAJA provides a region construct that takes a template argument to specify the
execution back-end. For example:

6.1. RAJA User Guide 25

RAJA Documentation, Release 2022.03.1

RAJA::region<RAJA::omp_parallel_region>([=]() {

RAJA::forall<RAJA::omp_for_nowait_static_exec< > >(segment,
[=] (int idx) {

// do something at iterate 'idx'
}

);

RAJA::forall<RAJA::omp_for_static_exec< > >(segment,
[=] (int idx) {

// do something else at iterate 'idx'
}

);

});

Here, the RAJA::region<RAJA::omp_parallel_region> method call creates an OpenMP parallel region,
which contains two RAJA::forall kernels. The first uses the RAJA::omp_for_nowait_static_exec< >
policy, meaning that no thread synchronization is needed after the kernel. Thus, threads can start working on the
second kernel while others are still working on the first kernel. I general, this will be correct when the segments used
in the two kernels are the same, each loop is data parallel, and static scheduling is applied to both loops. The second
kernel uses the RAJA::omp_for_static_exec policy, which means that all threads will complete before the
kernel exits. In this example, this is not really needed since there is no more code to execute in the parallel region and
there is an implicit barrier at the end of it.

Threading Building Block (TBB) Parallel CPU Policies

RAJA provides a basic set of TBB execution policies for users who would like to try it.

Threading Building
Blocks Policies

Works with Brief description

tbb_for_exec forall, kernel
(For), scan

Execute loop iterations. as tasks in parallel using TBB
parallel_for method.

tbb_for_static<CHUNK_SIZE>forall, kernel
(For), scan

Same as above, but use. a static scheduler with given
chunk size.

tbb_for_dynamic forall, kernel
(For), scan

Same as above, but use a dynamic scheduler.

Note: To control the number of TBB worker threads used by these policies: set the value of the environment variable
‘TBB_NUM_WORKERS’ (which is fixed for duration of run), or create a ‘task_scheduler_init’ object:

tbb::task_scheduler_init TBBinit(nworkers);

// do some parallel work

TBBinit.terminate();
TBBinit.initialize(new_nworkers);

// do some more parallel work

26 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

This allows changing number of workers at runtime.

GPU Policies for CUDA and HIP

RAJA policies for GPU execution using CUDA or HIP are essentially identical. The only difference is that CUDA
policies have the prefix cuda_ and HIP policies have the prefix hip_.

6.1. RAJA User Guide 27

RAJA Documentation, Release 2022.03.1

CUDA/HIP
Execution
Policies

Works
with

Brief description

cuda/hip_exec<BLOCK_SIZE>forall,
scan,
sort

Execute loop iterations in a GPU kernel launched with given thread-block
size. Note that the thread-block size must be provided, there is no default
provided.

cuda/hip_thread_x_directker-
nel
(For)

Map loop iterates directly to GPU threads in x-dimension, one iterate per
thread (see note below about limitations)

cuda/hip_thread_y_directker-
nel
(For)

Same as above, but map to threads in y-dim

cuda/hip_thread_z_directker-
nel
(For)

Same as above, but map to threads in z-dim

cuda/hip_thread_x_loopker-
nel
(For)

Similar to thread-x-direct policy, but use a block-stride loop which doesn’t
limit number of loop iterates

cuda/hip_thread_y_loopker-
nel
(For)

Same as above, but for threads in y-dimension

cuda/hip_thread_z_loopker-
nel
(For)

Same as above, but for threads in z-dimension

cuda/hip_flatten_block_threads_{xyz}Teams
(Loop)

Reshapes threads in a multi-dimensional thread team into one-dimension,
accepts any permutation of dimensions (expt namespace)

cuda/hip_block_x_directker-
nel
(For)

Map loop iterates directly to GPU thread blocks in x-dimension, one iterate
per block

cuda/hip_block_y_directker-
nel
(For)

Same as above, but map to blocks in y-dimension

cuda/hip_block_z_directker-
nel
(For)

Same as above, but map to blocks in z-dimension

cuda/hip_block_x_loopker-
nel
(For)

Similar to block-x-direct policy, but use a grid-stride loop.

cuda/hip_block_y_loopker-
nel
(For)

Same as above, but use blocks in y-dimension

cuda/hip_block_z_loopker-
nel
(For)

Same as above, but use blocks in z-dimension

cuda/hip_global_thread_xTeams
(Loop)

Creates a unique thread id for each thread on the x dimension of the grid
(expt namespace)

cuda/hip_global_thread_yTeams
(Loop)

Same as above, but uses threads in y-dimension (expt namespace)

cuda/hip_global_thread_zTeams
(Loop)

Same as above, but uses threads in z-dimension (expt namespace)

cuda/hip_warp_directker-
nel
(For)

Map work to threads in a warp directly. Cannot be used in conjunction
with cuda/hip_thread_x_* policies. Multiple warps can be created by using
cuda/hip_thread_y/z_* policies.

cuda/hip_warp_loopker-
nel
(For)

Policy to map work to threads in a warp using a warp-stride loop. Cannot
be used in conjunction with cuda/hip_thread_x_* policies. Multiple warps
can be created by using cuda/hip_thread_y/z_* policies.

cuda/hip_warp_masked_direct<BitMask<..>>ker-
nel
(For)

Policy to map work directly to threads in a warp using a bit mask. Cannot
be used in conjunction with cuda/hip_thread_x_* policies. Multiple warps
can be created by using cuda/hip_thread_y/z_* policies.

cuda/hip_warp_masked_loop<BitMask<..>>ker-
nel
(For)

Policy to map work to threads in a warp using a bit mask and a warp-stride
loop. Cannot be used in conjunction with cuda/hip_thread_x_* policies.
Multiple warps can be created by using cuda/hip_thread_y/z_* policies.

cuda/hip_block_reduceker-
nel
(Re-
duce)

Perform a reduction across a single GPU thread block.

cuda/_warp_reduceker-
nel
(Re-
duce)

Perform a reduction across a single GPU thread warp.

28 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Several notable constraints apply to RAJA CUDA/HIP thread-direct policies.

Note:

• Repeating thread direct policies with the same thread dimension in perfectly nested loops is not recommended.
Your code may do something, but likely will not do what you expect and/or be correct.

• If multiple thread direct policies are used in a kernel (using different thread dimensions), the product of sizes of
the corresponding iteration spaces cannot be greater than the maximum allowable threads per block. Typically,
this is equ:math:leq 1024; e.g., attempting to launch a CUDA kernel with more than 1024 threads per block will
cause the CUDA runtime to complain about illegal launch parameters.

• Thread-direct policies are recommended only for certain loop patterns, such as tiling.

Several notes regarding CUDA/HIP thread and block loop policies are also good to know.

Note:

• There is no constraint on the product of sizes of the associated loop iteration space.

• These polices allow having a larger number of iterates than threads in the x, y, or z thread dimension.

• CUDA/HIP thread and block loop policies are recommended for most loop patterns.

Finally

Note: CUDA/HIP block-direct policies may be preferable to block-loop policies in situations where block load
balancing may be an issue as the block-direct policies may yield better performance.

6.1. RAJA User Guide 29

RAJA Documentation, Release 2022.03.1

GPU Policies for SYCL

SYCL Execution
Policies

Works
with

Brief description

sycl_exec<WORK_GROUP_SIZE>forall, Execute loop iterations in a GPU kernel launched with given work
group size.

sycl_global_0<WORK_GROUP_SIZE>ker-
nel
(For)

Map loop iterates directly to GPU global ids in first dimension, one
iterate per work item. Group execution into work groups of given
size.

sycl_global_1<WORK_GROUP_SIZE>ker-
nel
(For)

Same as above, but map to global ids in second dim

sycl_global_2<WORK_GROUP_SIZE>ker-
nel
(For)

Same as above, but map to global ids in third dim

sycl_local_0_direct ker-
nel
(For)

Map loop iterates directly to GPU work items in first dimension, one
iterate per work item (see note below about limitations)

sycl_local_1_direct ker-
nel
(For)

Same as above, but map to work items in second dim

sycl_local_2_direct ker-
nel
(For)

Same as above, but map to work items in third dim

sycl_local_0_loop ker-
nel
(For)

Similar to local-1-direct policy, but use a work group-stride loop
which doesn’t limit number of loop iterates

sycl_local_1_loop ker-
nel
(For)

Same as above, but for work items in second dimension

sycl_local_2_loop ker-
nel
(For)

Same as above, but for work items in third dimension

sycl_group_0_direct ker-
nel
(For)

Map loop iterates directly to GPU group ids in first dimension, one
iterate per group

sycl_group_1_direct ker-
nel
(For)

Same as above, but map to groups in second dimension

sycl_group_2_direct ker-
nel
(For)

Same as above, but map to groups in third dimension

sycl_group_0_loop ker-
nel
(For)

Similar to group-1-direct policy, but use a group-stride loop.

sycl_group_1_loop ker-
nel
(For)

Same as above, but use groups in second dimension

sycl_group_2_loop ker-
nel
(For)

Same as above, but use groups in third dimension

30 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

OpenMP Target Offload Policies

RAJA provides policies to use OpenMP to offload kernel execution to a GPU device, for example. They are summa-
rized in the following table.

OpenMP
Target
Execution
Policies

Works
with

Brief description

omp_target_parallel_for_exec<#>forall,
ker-
nel(For)

Create parallel target region and execute with given number of threads per team
inside it. Number of teams is calculated internally; i.e., apply omp teams
distribute parallel for num_teams(iteration space
size/#) thread_limit(#) pragma

omp_target_parallel_collapse_execker-
nel
(Col-
lapse)

Similar to above, but collapse perfectly-nested loops, indicated in arguments to
RAJA Collapse statement. Note: compiler determines number of thread teams
and threads per team

RAJA IndexSet Execution Policies

When an IndexSet iteration space is used in RAJA, such as passing an IndexSet to a RAJA::forall method, an
index set execution policy is required. An index set execution policy is a two-level policy: an ‘outer’ policy for
iterating over segments in the index set, and an ‘inner’ policy used to execute the iterations defined by each segment.
An index set execution policy type has the form:

RAJA::ExecPolicy< segment_iteration_policy, segment_execution_policy>

See IndexSets for more information.

In general, any policy that can be used with a RAJA::forall method can be used as the segment execution policy.
The following policies are available to use for the outer segment iteration policy:

Execution Policy Brief description
Serial
seq_segit Iterate over index set segments sequentially.
OpenMP CPU mul-
tithreading
omp_parallel_segit Create OpenMP parallel region and iterate over segments in parallel inside it; i.e., apply

omp parallel for pragma on loop over segments.
omp_parallel_for_segit Same as above.
Intel Threading
Building Blocks
tbb_segit Iterate over index set segments in parallel using a TBB ‘parallel_for’ method.

Parallel Region Policies

Earlier, we discussed an example using the RAJA::region construct to execute multiple kernels in an OpenMP
parallel region. To support source code portability, RAJA provides a sequential region concept that can be used to
surround code that uses execution back-ends other than OpenMP. For example:

6.1. RAJA User Guide 31

RAJA Documentation, Release 2022.03.1

RAJA::region<RAJA::seq_region>([=]() {

RAJA::forall<RAJA::loop_exec>(segment, [=] (int idx) {
// do something at iterate 'idx'

});

RAJA::forall<RAJA::loop_exec>(segment, [=] (int idx) {
// do something else at iterate 'idx'

});

});

Note: The sequential region specialization is essentially a pass through operation. It is provided so that if you want
to turn off OpenMP in your code, for example, you can simply replace the region policy type and you do not have to
change your algorithm source code.

Reduction Policies

Each RAJA reduction object must be defined with a ‘reduction policy’ type. Reduction policy types are distinct from
loop execution policy types. It is important to note the following constraints about RAJA reduction usage:

Note: To guarantee correctness, a reduction policy must be consistent with the loop execution policy used. For
example, a CUDA reduction policy must be used when the execution policy is a CUDA policy, an OpenMP reduction
policy must be used when the execution policy is an OpenMP policy, and so on.

The following table summarizes RAJA reduction policy types:

Reduction Pol-
icy

Loop Policies to
Use With

Brief description

seq_reduce seq_exec,
loop_exec

Non-parallel (sequential) reduction.

omp_reduce any OpenMP pol-
icy

OpenMP parallel reduction.

omp_reduce_orderedany OpenMP pol-
icy

OpenMP parallel reduction with result guaranteed to be reproducible.

omp_target_reduceany OpenMP tar-
get policy

OpenMP parallel target offload reduction.

tbb_reduce any TBB policy TBB parallel reduction.
cuda/hip_reduce any CUDA/HIP

policy
Parallel reduction in a CUDA/HIP kernel (device synchronization will oc-
cur when reduction value is finalized).

cuda/hip_reduce_atomicany CUDA/HIP
policy

Same as above, but reduction may use CUDA atomic operations.

sycl_reduce any SYCL policy Reduction in a SYCL kernel (device synchronization will occur when the
reduction value is finalized).

Note: RAJA reductions used with SIMD execution policies are not guaranteed to generate correct results at present.

32 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Atomic Policies

Each RAJA atomic operation must be defined with an ‘atomic policy’ type. Atomic policy types are distinct from loop
execution policy types.

Note: An atomic policy type must be consistent with the loop execution policy for the kernel in which the atomic
operation is used. The following table summarizes RAJA atomic policies and usage.

Atomic
Policy

Loop Policies to Use
With

Brief description

seq_atomic seq_exec, loop_exec Atomic operation performed in a non-parallel (sequential) kernel.
omp_atomicany OpenMP policy Atomic operation performed in an OpenMP. multithreading or target kernel;

i.e., apply omp atomic pragma.
cuda/hip_atomicany CUDA/HIP policy Atomic operation performed in a CUDA/HIP kernel.
cuda/hip_atomic_explicitany CUDA/HIP policy Atomic operation performed in a CUDA/HIP kernel that may also be used

in a host execution context. The atomic policy takes a host atomic policy
template argument. See additional explanation and example below.

builtin_atomicseq_exec, loop_exec,
any OpenMP policy

Compiler builtin atomic operation.

auto_atomicseq_exec, loop_exec,
any OpenMP policy,
any CUDA/HIP policy

Atomic operation compatible with loop execution policy. See example be-
low. Can not be used inside cuda/hip explicit atomic policies.

Note: The cuda_atomic_explicit and hip_atomic_explicit policies take a host atomic policy template
parameter. They are intended to be used with kernels that are host-device decorated to be used in either a host or device
execution context.

Here is an example illustrating use of the cuda_atomic_explicit policy:

auto kernel = [=] RAJA_HOST_DEVICE (RAJA::Index_type i) {
RAJA::atomicAdd< RAJA::cuda_atomic_explicit<omp_atomic> >(&sum, 1);

};

RAJA::forall< RAJA::cuda_exec<BLOCK_SIZE> >(RAJA::RangeSegment seg(0, N), kernel);

RAJA::forall< RAJA::omp_parallel_for_exec >(RAJA::RangeSegment seg(0, N),
kernel);

In this case, the atomic operation knows when it is compiled for the device in a CUDA kernel context and the CUDA
atomic operation is applied. Similarly when it is compiled for the host in an OpenMP kernel the omp_atomic policy
is used and the OpenMP version of the atomic operation is applied.

Here is an example illustrating use of the auto_atomic policy:

RAJA::forall< RAJA::cuda_exec<BLOCK_SIZE> >(RAJA::RangeSegment seg(0, N),
[=] RAJA_DEVICE (RAJA::Index_type i) {

RAJA::atomicAdd< RAJA::auto_atomic >(&sum, 1);

});

6.1. RAJA User Guide 33

RAJA Documentation, Release 2022.03.1

In this case, the atomic operation knows that it is used in a CUDA kernel context and the CUDA atomic operation is
applied. Similarly, if an OpenMP execution policy was used, the OpenMP version of the atomic operation would be
used.

Note:

• There are no RAJA atomic policies for TBB (Intel Threading Building Blocks) execution contexts at present.

• The builtin_atomic policy may be preferable to the omp_atomic policy in terms of performance.

Local Array Memory Policies

RAJA::LocalArray types must use a memory policy indicating where the memory for the local array will live.
These policies are described in Local Array.

The following memory policies are available to specify memory allocation for RAJA::LocalArray objects:

• RAJA::cpu_tile_mem - Allocate CPU memory on the stack

• RAJA::cuda/hip_shared_mem - Allocate CUDA or HIP shared memory

• RAJA::cuda/hip_thread_mem - Allocate CUDA or HIP thread private memory

RAJA Kernel Execution Policies

RAJA kernel execution policy constructs form a simple domain specific language for composing and transforming
complex loops that relies solely on standard C++14 template support. RAJA kernel policies are constructed using
a combination of Statements and Statement Lists. A RAJA Statement is an action, such as execute a loop, invoke a
lambda, set a thread barrier, etc. A StatementList is an ordered list of Statements that are composed in the order that
they appear in the kernel policy to construct a kernel. A Statement may contain an enclosed StatmentList. Thus, a
RAJA::KernelPolicy type is really just a StatementList.

The main Statement types provided by RAJA are RAJA::statement::For and
RAJA::statement::Lambda, that we have shown above. A ‘For’ Statement indicates a for-loop structure
and takes three template arguments: ‘ArgId’, ‘ExecPolicy’, and ‘EnclosedStatements’. The ArgID identifies the
position of the item it applies to in the iteration space tuple argument to the RAJA::kernel method. The ExecPolicy
is the RAJA execution policy to use on that loop/iteration space (similar to RAJA::forall). EnclosedStatements
contain whatever is nested within the template parameter list to form a StatementList, which will be executed for each
iteration of the loop. The RAJA::statement::Lambda<LambdaID> invokes the lambda corresponding to its
position (LambdaID) in the sequence of lambda expressions in the RAJA::kernel argument list. For example, a
simple sequential for-loop:

for (int i = 0; i < N; ++i) {
// loop body

}

can be represented using the RAJA kernel interface as:

using KERNEL_POLICY =
RAJA::KernelPolicy<
RAJA::statement::For<0, RAJA::seq_exec,

RAJA::statement::Lambda<0>
>

>;

(continues on next page)

34 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

RAJA::kernel<KERNEL_POLICY>(
RAJA::make_tuple(N_range),
[=](int i) {
// loop body

}
);

Note: All RAJA::forall functionality can be done using the RAJA::kernel interface. We maintain the
RAJA::forall interface since it is less verbose and thus more convenient for users.

RAJA::kernel Statement Types

The list below summarizes the current collection of statement types that can be used with RAJA::kernel and
RAJA::kernel_param. More detailed explanation along with examples of how they are used can be found in
RAJA Tutorial.

Note:

• RAJA::kernel_param functions similar to RAJA::kernel

except that the second argument is a tuple of parameters used in a kernel for local arrays, thread local variables, tiling
information, etc.

Note:

• All of the statement types described below are in the namespace

RAJA::statement. For breavity, we omit the namespaces.

Several RAJA statements can be specialized with auxilliary types, which are described in Auxilliary Types.

The following list contains the most commonly used statement types.

• For< ArgId, ExecPolicy, EnclosedStatements > abstracts a for-loop associated with kernel
iteration space at tuple index ArgId, to be run with ExecPolicy execution policy, and containing the
EnclosedStatements which are executed for each loop iteration.

• Lambda< LambdaId > invokes the lambda expression that appears at position ‘LambdaId’ in the sequence
of lambda arguments. With this statement, the lambda expression must accept all arguments associated with the
tuple of iteration space segments and tuple of parameters (if kernel_param is used).

• Lambda< LambdaId, Args...> extends the Lambda statement. The second template parameter indicates
which arguments (e.g., which segment iteration variables) are passed to the lambda expression.

• Collapse< ExecPolicy, ArgList<...>, EnclosedStatements > collapses multiple per-
fectly nested loops specified by tuple iteration space indices in ArgList, using the ExecPolicy execution
policy, and places EnclosedStatements inside the collapsed loops which are executed for each iteration.
Note that this only works for CPU execution policies (e.g., sequential, OpenMP). It may be available for
CUDA in the future if such use cases arise.

There is one statement specific to OpenMP kernels.

6.1. RAJA User Guide 35

RAJA Documentation, Release 2022.03.1

• OmpSyncThreads applies the OpenMP #pragma omp barrier directive.

Statement types that lauch CUDA or HIP GPU kernels are listed next. They work similarly for each back-end and
their names are distinguished by the prefix Cuda or Hip. For example, CudaKernel or HipKernel.

• Cuda/HipKernel< EnclosedStatements> launches ‘‘EnclosedStatements’ as a GPU kernel; e.g., a
loop nest where the iteration spaces of each loop level are associated with threads and/or thread blocks as
described by the execution policies applied to them. This kernel launch is synchronous.

• Cuda/HipKernelAsync< EnclosedStatements> asynchronous version of Cuda/HipKernel.

• Cuda/HipKernelFixed<num_threads, EnclosedStatements> similar to Cuda/HipKernel but
enables a fixed number of threads (specified by num_threads). This kernel launch is synchronous.

• Cuda/HipKernelFixedAsync<num_threads, EnclosedStatements> asynchronous version of
Cuda/HipKernelFixed.

• CudaKernelFixedSM<num_threads, min_blocks_per_sm, EnclosedStatements> similar
to CudaKernelFixed but enables a minimum number of blocks per sm (specified by min_blocks_per_sm), this
can help increase occupancy. This kernel launch is synchronous. Note: there is no HIP variant of this
statement.

• CudaKernelFixedSMAsync<num_threads, min_blocks_per_sm, EnclosedStatements>
asynchronous version of CudaKernelFixedSM. Note: there is no HIP variant of this statement.

• Cuda/HipKernelOcc<EnclosedStatements> similar to CudaKernel but uses the CUDA occu-
pancy calculator to determine the optimal number of threads/blocks. Statement is intended for use with
RAJA::cuda/hip_block_{xyz}_loop policies. This kernel launch is synchronous.

• Cuda/HipKernelOccAsync<EnclosedStatements> asynchronous version of Cuda/HipKernelOcc.

• Cuda/HipKernelExp<num_blocks, num_threads, EnclosedStatements> similar to Cud-
aKernelOcc but with the flexibility to fix the number of threads and/or blocks and let the CUDA occupancy
calculator determine the unspecified values. This kernel launch is synchronous.

• Cuda/HipKernelExpAsync<num_blocks, num_threads, EnclosedStatements> asyn-
chronous version of Cuda/HipKernelExp.

• Cuda/HipSyncThreads invokes CUDA or HIP ‘__syncthreads()’ barrier.

• Cuda/HipSyncWarp invokes CUDA ‘__syncwarp()’ barrier. **Note: warp sync is not supported, so the HIP
variant is a no-op.

Statement types that lauch SYCL kernels are listed next.

• SyclKernel<EnclosedStatements> launches EnclosedStatements as a SYCL kernel. This ker-
nel launch is synchronous.

• SyclKernelAsync<EnclosedStatements> asynchronous version of SyclKernel.

RAJA provides statements to define loop tiling which can improve performance; e.g., by allowing CPU cache blocking
or use of GPU shared memory.

• Tile< ArgId, TilePolicy, ExecPolicy, EnclosedStatements > abstracts an outer tiling
loop containing an inner for-loop over each tile. The ArgId indicates which entry in the iteration space tuple to
which the tiling loop applies and the TilePolicy specifies the tiling pattern to use, including its dimension.
The ExecPolicy and EnclosedStatements are similar to what they represent in a statement::For
type.

• TileTCount< ArgId, ParamId, TilePolicy, ExecPolicy, EnclosedStatements >
abstracts an outer tiling loop containing an inner for-loop over each tile, where it is necessary to obtain the
tile number in each tile. The ArgId indicates which entry in the iteration space tuple to which the loop
applies and the ParamId indicates the position of the tile number in the parameter tuple. The TilePolicy

36 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

specifies the tiling pattern to use, including its dimension. The ExecPolicy and EnclosedStatements
are similar to what they represent in a statement::For type.

• ForICount< ArgId, ParamId, ExecPolicy, EnclosedStatements > abstracts an inner for-
loop within an outer tiling loop where it is necessary to obtain the local iteration index in each
tile. The ArgId indicates which entry in the iteration space tuple to which the loop applies and the
ParamId indicates the position of the tile index parameter in the parameter tuple. The ExecPolicy and
EnclosedStatements are similar to what they represent in a statement::For type.

It is often advantageous to use local arrays for data accessed in tiled loops. RAJA provides a statement for allocating
data in a Local Array object according to a memory policy. See Local Array Memory Policies for more information
about such policies.

• InitLocalMem< MemPolicy, ParamList<...>, EnclosedStatements > allocates memory
for a RAJA::LocalArray object used in kernel. The ParamList entries indicate which local array ob-
jects in a tuple will be initialized. The EnclosedStatements contain the code in which the local array will
be accessed; e.g., initialization operations.

RAJA provides some statement types that apply in specific kernel scenarios.

• Reduce< ReducePolicy, Operator, ParamId, EnclosedStatements > reduces a value
across threads in a multi-threaded code region to a single thread. The ReducePolicy is similar to what
it represents for RAJA reduction types. ParamId specifies the position of the reduction value in the parameter
tuple passed to the RAJA::kernel_param method. Operator is the binary operator used in the reduction;
typically, this will be one of the operators that can be used with RAJA scans (see RAJA Scan Operators). After
the reduction is complete, the EnclosedStatements execute on the thread that received the final reduced
value.

• If< Conditional > chooses which portions of a policy to run based on run-time evaluation of conditional
statement; e.g., true or false, equal to some value, etc.

• Hyperplane< ArgId, HpExecPolicy, ArgList<...>, ExecPolicy,
EnclosedStatements > provides a hyperplane (or wavefront) iteration pattern over multiple in-
dices. A hyperplane is a set of multi-dimensional index values: i0, i1, . . . such that h = i0 + i1 + . . . for a
given h. Here, ArgId is the position of the loop argument we will iterate on (defines the order of hyperplanes),
HpExecPolicy is the execution policy used to iterate over the iteration space specified by ArgId (often
sequential), ArgList is a list of other indices that along with ArgId define a hyperplane, and ExecPolicy
is the execution policy that applies to the loops in ArgList. Then, for each iteration, everything in the
EnclosedStatements is executed.

Auxilliary Types

The following list summarizes auxillary types used in the above statments. These types live in the RAJA namespace.

• tile_fixed<TileSize> tile policy argument to a Tile or TileTCount statement; partitions loop iter-
ations into tiles of a fixed size specified by TileSize. This statement type can be used as the TilePolicy
template paramter in the Tile statements above.

• tile_dynamic<ParamIdx> TilePolicy argument to a Tile or TileTCount statement; partitions loop itera-
tions into tiles of a size specified by a TileSize{} positional parameter argument. This statement type can
be used as the TilePolicy template paramter in the Tile statements above.

• Segs<...> argument to a Lambda statement; used to specify which segments in a tuple will be used as lambda
arguments.

• Offsets<...> argument to a Lambda statement; used to specify which segment offsets in a tuple will be
used as lambda arguments.

6.1. RAJA User Guide 37

RAJA Documentation, Release 2022.03.1

• Params<...> argument to a Lambda statement; used to specify which params in a tuple will be used as
lambda arguments.

• ValuesT<T, ...> argument to a Lambda statement; used to specify compile time constants, of type T, that
will be used as lambda arguments.

Examples that show how to use a variety of these statement types can be found in Complex Loops: Transformations
and Advanced RAJA Features.

Indices, Segments, and IndexSets

Loop variables and their associated iteration spaces are fundamental to writing loop kernels in RAJA. RAJA provides
some basic iteration space types that serve as flexible building blocks that can be used to form a variety of loop iteration
patterns. These types can be used to define a particular order for loop iterates, aggregate and partition iterates, as well
as other configurations. In this section, we introduce RAJA index and iteration space concepts and types.

More examples of RAJA iteration space usage can be found in the Iteration Spaces: IndexSets and Segments and Mesh
Vertex Sum Example: Iteration Space Coloring sections of the tutorial.

Note: All RAJA iteration space types described here are located in the namespace RAJA.

Indices

Just like traditional C and C++ for-loops, RAJA uses index variables to identify loop iterates. Any lambda expression
that represents all or part of a loop body passed to a RAJA::forall or RAJA::kernel method will take at least
one loop index variable argument. RAJA iteration space types are templates that allow users to use any integral
type for an index variable. The index variable type may be explicitly specified by a user. RAJA also provides the
RAJA::Index_type type, which is used as a default in some circumstances for convenience by allowing use of
a common type alias to typed constructs without explicitly specifying the type. The RAJA::Index_type type is
an alias to the C++ type std::ptrdiff_t, which is appropriate for most compilers to generate useful loop-level
optimizations.

Segments

A RAJA Segment represents a set of loop indices that one wants to execute as a unit. RAJA provides Segment types
for contiguous index ranges, constant (non-unit) stride ranges, and arbitrary lists of indices.

Stride-1 Segments

A RAJA::TypedRangeSegment is the fundamental type for representing a stride-1 (i.e., contiguous) range of
indices.

Fig. 1: A range segment defines a stride-1 index range [beg, end).

One can create an explicitly-typed range segment or one with the default RAJA::Index_type index type. For
example,:

38 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

// A stride-1 index range [beg, end) using type int.
RAJA::TypedRangeSegment<int> int_range(beg, end);

// A stride-1 index range [beg, end) using the RAJA::Index_type default type
RAJA::RangeSegment default_range(beg, end);

Note: When using a RAJA range segment, no loop iterations will be run when begin is greater-than-or-equal-to end
similar to a C-style for-loop.

Strided Segments

A RAJA::TypedRangeStrideSegment defines a range with a constant stride that is given explicitly stride,
including negative stride.

Fig. 2: A range-stride segment defines an index range with arbitrary stride [beg, end, stride).

One can create an explicitly-typed strided range segment or one with the default RAJA::Index_type index type.
For example,:

// A stride-2 index range [beg, end, 2) using type int.
RAJA::TypedRangeStrideSegment<int> stride2_range(beg, end, 2);

// A index range with -1 stride [0, N-1, -1) using the RAJA::Index_type default type
RAJA::RangeStrideSegment neg1_range(N-1, -1, -1);

Using a range with a stride of ‘-1’ as above in a RAJA loop traversal template will run the loop indices in reverse order.
That is, using ‘neg1_range’ from above:

RAJA::forall< RAJA::seq_exec >(neg1_range, [=] (RAJA::Index_type i) {
printf("%ld ", i);

});

will print the values:

N-1 N-2 N-3 1 0

RAJA strided ranges support both positive and negative stride values. The following items are worth noting:

Note: When using a RAJA strided range, no loop iterations will be run under the following conditions:

• Stride > 0 and begin > end

• Stride < 0 and begin < end

• Stride == 0

6.1. RAJA User Guide 39

RAJA Documentation, Release 2022.03.1

List Segments

A RAJA::TypedListSegment is used to define an arbitrary set of loop indices, akin to an indirection array.

Fig. 3: A list segment defines an arbitrary collection of indices. Here, we have a list segment with 5 irregularly-spaced
indices.

A list segment is created by passing an array of integral values to a list segment constructor. For example:

// Create a vector holding some integer index values
std::vector<int> idx = {0, 2, 3, 4, 7, 8, 9, 53};

// Create list segment with these loop indices where the indices are
// stored in the host memory space
camp::resources::Resource host_res{camp::resources::Host()};
RAJA::TypedListSegment<int> idx_list(&idx[0], idx.size(),

host_res);

Using a list segment in a RAJA loop traversal template will run the loop indices specified in the array passed to the list
segment constructor. That is, using ‘idx_list’ from above:

RAJA::forall< RAJA::seq_exec >(idx_list, [=] (RAJA::Index_type i) {
printf("%ld ", i);

});

will print the values:

0 2 3 4 7 8 9 53

Note that a RAJA::TypedListSegment constructor can take a pointer to an array of indices and an array length,
as shown above. If the indices are in a container, such as std::vector that provides begin(), end(), and
size() methods, the length argument is not required. For example:

std::vector<int> idx = {0, 2, 3, 4, 7, 8, 9, 53};

camp::resources::Resource host_res{camp::resources::Host()};
RAJA::TypedListSegment<int> idx_list(idx, host_res);

Similar to range segment types, RAJA provides RAJA::ListSegment, which is a type alias to
RAJA::TypedListSegment using RAJA::Index_type as the template type parameter.

By default, the list segment constructor copies the indices in the array passed to it to the memory space specified by the
resource argument. The resource argument is required so that the segment index values are in the proper memory space
for the kernel to run. Since the kernel is run on the CPU host in this example (indicated by the RAJA::seq_exec
execution policy), we pass a host resource object to the list segment constructor. If, for example, the kernel was to
run on a GPU using a CUDA or HIP execution policy, then the resource type passed to the camp resource constructor
would be camp::resources::Cuda() or camp::resources::Hip(), respectively.

Segment Types and Iteration

It is worth noting that RAJA segment types model C++ iterable interfaces. In particular, each segment type defines
three methods:

40 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

• begin()

• end()

• size()

and two types:

• iterator (essentially a random access iterator type)

• value_type

Thus, any iterable type that defines these methods and types appropriately can be used as a segment with RAJA
traversal templates.

IndexSets

A RAJA::TypedIndexSet is a container that can hold an arbitrary collection of segment objects of arbitrary type
as illustrated in the following figure, where we have two contiguous ranges and an irregularly-spaced list of indices.

Fig. 4: An index set with 2 range segments and one list segment.

We can create an index set that describes such an iteration space:

// Create an index set that can hold range and list segments with the
// default index type
RAJA::TypedIndexSet< RAJA::RangeSegment, RAJA::ListSegment > iset;

// Add two range segments and one list segment to the index set
iset.push_back(RAJA::RangeSegment(...));
iset.push_back(RAJA::ListSegment(...));
iset.push_back(RAJA::RangeSegment(...));

Now that we’ve created this index set object, we can pass it to any RAJA loop execution template to execute the indices
defined by its segments:

// Define an index set execution policy type that will iterate over
// its segments in parallel (OpenMP) and execute each segment sequentially
using ISET_EXECPOL = RAJA::ExecPolicy< RAJA::omp_parallel_segit,

RAJA::seq_exec >;

// Run a kernel with iterates defined by the index set
RAJA::forall<ISET_EXECPOL>(iset, [=] (int i) { ... });

In this example, the loop iterations will execute in three chunks defined by the two range segments and one list segment.
The segments will be iterated over in parallel using OpenMP, and each segment will execute sequentially.

Note: Iterating over the indices of all segments in a RAJA index set requires a two-level execution policy, with two
template parameters, as shown above. The first parameter specifies how to iterate over the seqments. The second

6.1. RAJA User Guide 41

RAJA Documentation, Release 2022.03.1

parameter specifies how each segment will execute. See RAJA IndexSet Execution Policies for more information about
RAJA index set execution policies.

Note: It is the responsibility of the user to ensure that segments are defined properly when using RAJA index sets.
For example, if the same index appears in multiple segments, the corresponding loop iteration will be run multiple
times.

View and Layout

Matrices and tensors, which are common in scientific computing applications, are naturally expressed as multi-
dimensional arrays. However, for efficiency in C and C++, they are usually allocated as one-dimensional arrays.
For example, a matrix 𝐴 of dimension 𝑁𝑟 ×𝑁𝑐 is typically allocated as:

double* A = new double [N_r * N_c];

Using a one-dimensional array makes it necessary to convert two-dimensional indices (rows and columns of a matrix)
to a one-dimensional pointer offset to access the corresponding array memory location. One could use a macro such
as:

#define A(r, c) A[c + N_c * r]

to access a matrix entry in row r and column c. However, this solution has limitations; e.g., additional macro defini-
tions may be needed when adopting a different matrix data layout or when using other matrices. To facilitate multi-
dimensional indexing and different indexing layouts, RAJA provides RAJA::View and RAJA::Layout classes.

RAJA Views

A RAJA::View object wraps a pointer and enables indexing into the data referenced via the pointer based on a
RAJA::Layout object. We can create a RAJA::View for a matrix with dimensions 𝑁𝑟 ×𝑁𝑐 using a RAJA View
and a default RAJA two-dimensional Layout as follows:

double* A = new double [N_r * N_c];

const int DIM = 2;
RAJA::View<double, RAJA::Layout<DIM> > Aview(A, N_r, N_c);

The RAJA::View constructor takes a pointer to the matrix data and the extent of each matrix dimension as arguments.
The template parameters to the RAJA::View type define the pointer type and the Layout type; here, the Layout just
defines the number of index dimensions. Using the resulting view object, one may access matrix entries in a row-
major fashion (the default RAJA layout follows the C and C++ standards for multi-dimensional arrays) through the
view parenthesis operator:

// r - row index of matrix
// c - column index of matrix
// equivalent to indexing as A[c + r * N_c]
Aview(r, c) = ...;

A RAJA::View can support any number of index dimensions:

const int DIM = n+1;
RAJA::View< double, RAJA::Layout<DIM> > Aview(A, N0, ..., Nn);

42 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

By default, entries corresponding to the right-most index are contiguous in memory; i.e., unit-stride access. Each other
index is offset by the product of the extents of the dimensions to its right. For example, the loop:

// iterate over index n and hold all other indices constant
for (int in = 0; in < Nn; ++in) {

Aview(i0, i1, ..., in) = ...
}

accesses array entries with unit stride. The loop:

// iterate over index j and hold all other indices constant
for (int j = 0; j < Nj; ++j) {
Aview(i0, i1, ..., j, ..., iN) = ...

}

access array entries with stride N n * N (n-1) * . . . * N (j+1).

MultiView

Using numerous arrays with the same size and Layout, where each needs a View, can be cumbersome. Developers
need to create a View object for each array, and when using the Views in a kernel, they require redundant pointer offset
calculations. RAJA::MultiView solves these problems by providing a way to create many Views with the same
Layout in one instantiation, and operate on an array-of-pointers that can be used to succinctly access data.

A RAJA::MultiView object wraps an array-of-pointers, or a pointer-to-pointers, whereas a RAJA::View wraps
a single pointer or array. This allows a single RAJA::Layout to be applied to multiple arrays associated with the
MultiView, allowing the arrays to share indexing arithmetic when their access patterns are the same.

The instantiation of a MultiView works exactly like a standard View, except that it takes an array-of-pointers. In the
following example, a MultiView applies a 1-D layout of length 4 to 2 arrays in myarr.

// Arrays of the same size, which will become internal to the MultiView.
int a1[4] = {5,6,7,8};
int a2[4] = {9,10,11,12};

// Array-of-pointers which will be passed into MultiView.
int * myarr[2];
myarr[0] = a1;
myarr[1] = a2;

// This MultiView applies a 1-D layout of length 4 to each internal array in myarr.
RAJA::MultiView< int, RAJA::Layout<1> > MView(myarr, 4);

The default MultiView accesses individual arrays via the 0-th position of the MultiView.

t1 = MView(0, 3); // accesses the 4th index of the 0th internal array a1, returns
→˓value of 8
t2 = MView(1, 2); // accesses 3rd index of the 1st internal array a2, returns

→˓value of 11

The index into the array-of-pointers can be moved to different argument positions of the MultiView () access operator,
rather than the default 0-th position. For example, by passing a third template argument to the MultiView constructor
in the previous example, the internal array index and the integer indicating which array to access can be reversed.

// MultiView with array-of-pointers index in 1st position.
RAJA::MultiView< int, RAJA::Layout<1>, 1 > MView1(myarr, 4);

(continues on next page)

6.1. RAJA User Guide 43

RAJA Documentation, Release 2022.03.1

(continued from previous page)

t3 = MView1(3, 0); // accesses the 4th index of the 0th internal array a1,
→˓returns value of 8
t4 = MView1(2, 1); // accesses 3rd index of the 1st internal array a2, returns

→˓value of 11

With higher dimensional Layouts, the index into the array-of-pointers can be moved to other positions in the MultiView
() access operator. Here is an example that compares the accesses of a 2-D layout on a normal RAJA::View with a
RAJA::MultiView with the array-of-pointers index set to the 2nd position.

RAJA::View< int, RAJA::Layout<2> > normalView(a1, 2, 2);

t1 = normalView(1, 1); // accesses 4th index of the a1 array, value = 8

// MultiView with array-of-pointers index in 2nd position
RAJA::MultiView< int, RAJA::Layout<2>, 2 > MView2(myarr, 2, 2);

t2 = MView2(1, 1, 0); // accesses the 4th index of the 0th internal array a1,
→˓returns value of 8 (same as normalView(1,1))
t3 = MView2(0, 0, 1); // accesses the 1st index of the 1st internal array a2,

→˓returns value of 9

RAJA Layouts

RAJA::Layout objects support other indexing patterns with different striding orders, offsets, and permutations. In
addition to layouts created using the default Layout constructor, as shown above, RAJA provides other methods to
generate layouts for different indexing patterns. We describe them here.

Permuted Layout

The RAJA::make_permuted_layout method creates a RAJA::Layout object with permuted index strides.
That is, the indices with shortest to longest stride are permuted. For example,:

std::array< RAJA::idx_t, 3> perm {{1, 2, 0}};
RAJA::Layout<3> layout =

RAJA::make_permuted_layout({{5, 7, 11}}, perm);

creates a three-dimensional layout with index extents 5, 7, 11 with indices permuted so that the first index (index 0 -
extent 5) has unit stride, the third index (index 2 - extent 11) has stride 5, and the second index (index 1 - extent 7) has
stride 55 (= 5*11).

Note: If a permuted layout is created with the identity permutation (e.g., {0,1,2}, the layout is the same as if it were
created by calling the Layout constructor directly with no permutation.

The first argument to RAJA::make_permuted_layout is a C++ array whose entries define the extent of each
index dimension. The double braces are required to properly initialize the internal sub-object which holds the
extents. The second argument is the striding permutation and similarly requires double braces.

In the next example, we create the same permuted layout as above, then create a RAJA::View with it in a way that
tells the view which index has unit stride:

44 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

const int s0 = 5; // extent of dimension 0
const int s1 = 7; // extent of dimension 1
const int s2 = 11; // extent of dimension 2

double* B = new double[s0 * s1 * s2];

std::array< RAJA::idx_t, 3> perm {{1, 2, 0}};
RAJA::Layout<3> layout =

RAJA::make_permuted_layout({{s0, s1, s2}}, perm);

// The Layout template parameters are dimension, 'linear index' type used
// when converting an index triple into the corresponding pointer offset
// index, and the index with unit stride
RAJA::View<double, RAJA::Layout<3, int, 0> > Bview(B, layout);

// Equivalent to indexing as: B[i + j * s0 * s2 + k * s0]
Bview(i, j, k) = ...;

Note: Telling a view which index has unit stride makes the multi-dimensional index calculation more efficient by
avoiding multiplication by ‘1’ when it is unnecessary. The layout permutation and unit-stride index specification
must be consistent to prevent incorrect indexing.

Offset Layout

The RAJA::make_offset_layout method creates a RAJA::OffsetLayout object with offsets applied to
the indices. For example,:

double* C = new double[11];

RAJA::Layout<1> layout = RAJA::make_offset_layout<1>({{-5}}, {{5}});

RAJA::View<double, RAJA::OffsetLayout<1> > Cview(C, layout);

creates a one-dimensional view with a layout that allows one to index into it using indices in [−5, 5]. In other words,
one can use the loop:

for (int i = -5; i < 6; ++i) {
CView(i) = ...;

}

to initialize the values of the array. Each ‘i’ loop index value is converted to an array offset index by subtracting the
lower offset from it; i.e., in the loop, each ‘i’ value has ‘-5’ subtracted from it to properly access the array entry. That
is, the sequence of indices generated by the for-loop:

-5 -4 -3 ... 5

will index into the data array as:

0 1 2 ... 10

The arguments to the RAJA::make_offset_layout method are C++ arrays that hold the start and end values of
the indices. RAJA offset layouts support any number of dimensions; for example:

6.1. RAJA User Guide 45

RAJA Documentation, Release 2022.03.1

RAJA::OffsetLayout<2> layout =
RAJA::make_offset_layout<2>({{-1, -5}}, {{2, 5}});

defines a two-dimensional layout that enables one to index into a view using indices [−1, 2] in the first dimension and
indices [−5, 5] in the second dimension. As noted earlier, double braces are needed to properly initialize the internal
data in the layout object.

Permuted Offset Layout

The RAJA::make_permuted_offset_layout method creates a RAJA::OffsetLayout object with per-
mutations and offsets applied to the indices. For example,:

std::array< RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> layout =

RAJA::make_permuted_offset_layout<2>({{-1, -5}}, {{2, 5}}, perm);

Here, the two-dimensional index space is [−1, 2]×[−5, 5], the same as above. However, the index strides are permuted
so that the first index (index 0) has unit stride and the second index (index 1) has stride 4, which is the extent of the
first index ([−1, 2]).

Note: It is important to note some facts about RAJA layout types. All layouts have a permutation. So a permuted
layout and a “non-permuted” layout (i.e., default permutation) has the type RAJA::Layout. Any layout with an
offset has the type RAJA::OffsetLayout. The RAJA::OffsetLayout type has a RAJA::Layout and offset
data. This was an intentional design choice to avoid the overhead of offset computations in the RAJA::View data
access operator when they are not needed.

Complete examples illustrating RAJA::Layouts and RAJA::Views may be found in the Stencil Computations
(View Offsets) and Batched Matrix-Multiply (Permuted Layouts) tutorial sections.

Typed Layouts

RAJA provides typed variants of RAJA::Layout and RAJA::OffsetLayout that enable users to specify integral
index types. Usage requires specifying types for the linear index and the multi-dimensional indicies. The following
example creates two two-dimensional typed layouts where the linear index is of type TIL and the ‘(x, y)’ indices for
accesingg the data have types TIX and TIY:

RAJA_INDEX_VALUE(TIX, "TIX");
RAJA_INDEX_VALUE(TIY, "TIY");
RAJA_INDEX_VALUE(TIL, "TIL");

RAJA::TypedLayout<TIL, RAJA::tuple<TIX,TIY>> layout(10, 10);
RAJA::TypedOffsetLayout<TIL, RAJA::tuple<TIX,TIY>> offLayout(10, 10);;

Note: Using the RAJA_INDEX_VALUE macro to create typed indices is helpful to prevent incorrect usage by
detecting at compile when, for example, indices are passes to a view parenthesis operator in the wrong order.

46 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Shifting Views

RAJA views include a shift method enabling users to generate a new view with offsets to the base view layout. The
base view may be templated with either a standard layout or offset layout and their typed variants. The new view will
use an offset layout or typed offset layout depending on whether the base view employed a typed layout. The example
below illustrates shifting view indices by 𝑁 ,

int N_r = 10;
int N_c = 15;
int *a_ptr = new int[N_r * N_c];

RAJA::View<int, RAJA::Layout<DIM>> A(a_ptr, N_r, N_c);
RAJA::View<int, RAJA::OffsetLayout<DIM>> Ashift = A.shift({{N,N}});

for(int y = N; y < N_c + N; ++y) {
for(int x = N; x < N_r + N; ++x) {
Ashift(x,y) = ...

}
}

RAJA Index Mapping

RAJA::Layout objects can also be used to map multi-dimensional indices to linear indices (i.e., pointer offsets)
and vice versa. This section describes basic Layout methods that are useful for converting between such indices.
Here, we create a three-dimensional layout with dimension extents 5, 7, and 11 and illustrate mapping between a
three-dimensional index space to a one-dimensional linear space:

// Create a 5 x 7 x 11 three-dimensional layout object
RAJA::Layout<3> layout(5, 7, 11);

// Map from 3-D index (2, 3, 1) to the linear index
// Note that there is no striding permutation, so the rightmost index is
// stride-1
int lin = layout(2, 3, 1); // lin = 188 (= 1 + 3 * 11 + 2 * 11 * 7)

// Map from linear index to 3-D index
int i, j, k;
layout.toIndices(lin, i, j, k); // i,j,k = {2, 3, 1}

RAJA layouts also support projections, where one or more dimension extent is zero. In this case, the linear index
space is invariant for those index entries; thus, the ‘toIndicies(. . .)’ method will always return zero for each dimension
with zero extent. For example:

// Create a layout with second dimension extent zero
RAJA::Layout<3> layout(3, 0, 5);

// The second (j) index is projected out
int lin1 = layout(0, 10, 0); // lin1 = 0
int lin2 = layout(0, 5, 1); // lin2 = 1

// The inverse mapping always produces zero for j
int i,j,k;
layout.toIndices(lin2, i, j, k); // i,j,k = {0, 0, 1}

6.1. RAJA User Guide 47

RAJA Documentation, Release 2022.03.1

RAJA Atomic Views

Any RAJA::View object can be made atomic so that any update to a data entry accessed via the view can only be
performed one thread (CPU or GPU) at a time. For example, suppose you have an integer array of length N, whose
element values are in the set {0, 1, 2, . . . , M-1}, where M < N. You want to build a histogram array of length M such
that the i-th entry in the array is the number of occurrences of the value i in the original array. Here is one way to do
this in parallel using OpenMP and a RAJA atomic view:

using EXEC_POL = RAJA::omp_parallel_for_exec;
using ATOMIC_POL = RAJA::omp_atomic

int* array = new double[N];
int* hist_dat = new double[M];

// initialize array entries to values in {0, 1, 2, ..., M-1}...
// initialize hist_dat to all zeros...

// Create a 1-dimensional view for histogram array
RAJA::View<int, RAJA::Layout<1> > hist_view(hist_dat, M);

// Create an atomic view into the histogram array using the view above
auto hist_atomic_view = RAJA::make_atomic_view<ATOMIC_POL>(hist_view);

RAJA::forall< EXEC_POL >(RAJA::RangeSegment(0, N), [=] (int i) {
hist_atomic_view(array[i]) += 1;

});

Here, we create a one-dimensional view for the histogram data array. Then, we create an atomic view from that, which
we use in the RAJA loop to compute the histogram entries. Since the view is atomic, only one OpenMP thread can
write to each array entry at a time.

RAJA View/Layouts Bounds Checking

The RAJA CMake variable RAJA_ENABLE_BOUNDS_CHECK may be used to turn on/off runtime bounds checking
for RAJA views. This may be a useful debugging aid for users. When attempting to use an index value that is out of
bounds, RAJA will abort the program and print the index that is out of bounds and the value of the index and bounds
for it. Since the bounds checking is a runtime operation, it incurs non-negligible overhead. When bounds checkoing
is turned off (default case), there is no additional run time overhead incurred.

Reduction Operations

RAJA does not provide separate loop execution methods for loops containing reduction operations like some other C++
loop programming abstraction models. Instead, RAJA provides reduction types that allow users to perform reduction
operations in RAJA::forall and RAJA::kernel kernels in a portable, thread-safe manner. Users may use as
many reduction objects in a loop kernel as they need. Available RAJA reduction types are described in this section.

A detailed example of RAJA reduction usage can be found in Reductions.

Note: All RAJA reduction types are located in the namespace RAJA.

Also

Note:

48 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

• Each RAJA reduction type is templated on a reduction policy and a reduction value type for the reduction
variable. The reduction policy type must be compatibe with the execution policy used by the kernel. For
example, in a CUDA kernel, a CUDA reduction policy must be used.

• Each RAJA reduction type accepts an initial reduction value or values at construction (see below).

• Each RAJA reduction type has a ‘get’ method to access reduced values after kernel execution completes.

Reduction Types

RAJA supports five common reduction types:

• ReduceSum< reduce_policy, data_type > - Sum of values.

• ReduceMin< reduce_policy, data_type > - Min value.

• ReduceMax< reduce_policy, data_type > - Max value.

• ReduceMinLoc< reduce_policy, data_type > - Min value and a loop index where the minimum
was found.

• ReduceMaxLoc< reduce_policy, data_type > - Max value and a loop index where the maximum
was found.

and two less common bitwise reduction types:

• ReduceBitAnd< reduce_policy, data_type > - Bitwise ‘and’ of values (i.e., a & b).

• ReduceBitOr< reduce_policy, data_type > - Bitwise ‘or’ of values (i.e., a | b).

Note:

• When RAJA::ReduceMinLoc and RAJA::ReduceMaxLoc are used in a sequential execution context, the
loop index of the min/max is the first index where the min/max occurs.

• When these reductions are used in a parallel execution context, the loop index computed for the reduction value
may be any index where the min or max occurs.

Note: RAJA::ReduceBitAnd and RAJA::ReduceBitOr reduction types are designed to work on integral
data types because in C++, at the language level, there is no such thing as a bitwise operator on floating-point
numbers.

Reduction Examples

Next, we provide a few examples to illustrate basic usage of RAJA reduction types.

Here is a simple RAJA reduction example that shows how to use a sum reduction type and a min-loc reduction type:

const int N = 1000;

//
// Initialize array of length N with all ones. Then, set some other
// values in the array to make the example mildly interesting...
//

(continues on next page)

6.1. RAJA User Guide 49

RAJA Documentation, Release 2022.03.1

(continued from previous page)

int vec[N] = {1};
vec[100] = -10; vec[500] = -10;

// Create a sum reduction object with initial value of zero
RAJA::ReduceSum< RAJA::omp_reduce, int > vsum(0);

// Create a min-loc reduction object with initial min value of 100
// and initial location index value of -1
RAJA::ReduceMinLoc< RAJA::omp_reduce, int > vminloc(100, -1);

// Run a kernel using the reduction objects
RAJA::forall<RAJA::omp_parallel_for_exec>(RAJA::RangeSegment(0, N),

[=](RAJA::Index_type i) {

vsum += vec[i];
vminloc.minloc(vec[i], i);

});

// After kernel is run, extract the reduced values
int my_vsum = static_cast<int>(vsum.get());

int my_vmin = static_cast<int>(vminloc.get());
int my_vminloc = static_cast<int>(vminloc.getLoc());

The results of these operations will yield the following values:

• my_vsum == 978 (= 998 - 10 - 10)

• my_vmin == -10

• my_vminloc == 100 or 500

Note that the location index for the minimum array value can be one of two values depending on the order of the
reduction finalization since the loop is run in parallel. Also, note that the reduction objects are created using a
RAJA::omp_reduce reduction policy, which is compatible with the OpenMP execution policy used in the ker-
nel.

Here is an example of a bitwise or reduction:

const int N = 100;

//
// Initialize all entries in array of length N to the value '9'
//
int vec[N] = {9};

// Create a bitwise or reduction object with initial value of '5'
RAJA::ReduceBitOr< RAJA::omp_reduce, int > my_or(5);

// Run a kernel using the reduction object
RAJA::forall<RAJA::omp_parallel_for_exec>(RAJA::RangeSegment(0, N),

[=](RAJA::Index_type i) {

my_or |= vec[i];

});

(continues on next page)

50 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

// After kernel is run, extract the reduced value
int my_or_reduce_val = static_cast<int>(my_or.get());

The result of the reduction is the value ‘13’. In binary representation (i.e., bits), 9 = ...01001 (the vector entries) and
5 = ...00101 (the initial reduction value). So 9|5 = ...01001|...00101 = ...01101 = 13.

Reduction Policies

For more information about available RAJA reduction policies and guidance on which to use with RAJA execution
policies, please see Reduction Policies.

Resources

This section describes the basic concepts of Resource types and their functionality in RAJA::forall. Resources
are used as an interface to various backend constructs and their respective hardware. Currently there exists Resource
types for Cuda, Hip, Omp (target) and Host. Resource objects allow the user to execute RAJA::forall calls
asynchronously on a respective thread/stream. The underlying concept of each individual Resource is still under
development and it should be considered that functionality / behaviour may change.

Note:

• Currently feature complete asynchronous behavior and streamed/threaded support is available only for Cuda
and Hip resources.

• The RAJA::resources namespace aliases the camp::resources namespace.

Each resource has a set of underlying functionality that is synonymous across all resource types.

Methods Brief description
get_platform Returns the underlying camp platform the resource is associated with.
get_event Return an Event object for the resource from the last resource call.
allocate Allocate data per the resource’s given backend.
deallocate Deallocate data per the resource’s given backend.
memcpy Perform a memory copy from a src location to a destination location from the resource’s

backend.
memset Set memory value per the resourse’s given backend.
wait_for Enqueue a wait on the resource’s stream/thread for a user passed event to occur.

Note: deallocate, memcpy and memset will only work with pointers that correspond to memory locations that
have been allocated on the resource’s respective device.

Each resource type also defines specific backend information/functionality. For example, each CUDA resource con-
tains a cudaStream_t value with an associated get method. See the individual functionality for each resource in
raja/tpl/camp/include/resource/.

Note: Stream IDs are assigned to resources in a round robin fashion. The number of independent streams for a given
backend is limited to the maximum number of concurrent streams that the back-end supports.

6.1. RAJA User Guide 51

RAJA Documentation, Release 2022.03.1

Type-Erasure

Resources can be declared in two formats: An erased resource, and a concrete resource. The underlying runtime
functionality is the same for both formats. An erased resource allows a user the ability to change the resource backend
at runtime.

Concrete CUDA resource:

RAJA::resources::Cuda my_cuda_res;

Erased resource:

if (use_gpu)
RAJA::resources::Resource my_res{RAJA::resources::Cuda()};

else
RAJA::resources::Resource my_res{RAJA::resources::Host()};

Memory allocation on resources:

int* a1 = my_cuda_res.allocate<int>(ARRAY_SIZE);
int* a2 = my_res.allocate<int>(ARRAY_SIZE);

If use_gpu is true, then the underlying type of my_res is a CUDA resource. Therefore a1 and a2 will both be
allocated on the GPU. If use_gpu is false, then only a1 is allocated on the GPU, and a2 is allocated on the host.

Forall

A resource is an optional argument to a RAJA::forall call. When used, it is passed as the first argument to the
method:

RAJA::forall<ExecPol>(my_gpu_res,)

When specifying a CUDA or HIP resource, the RAJA::forall is executed aynchronously on a stream. Currently,
CUDA and HIP are the only Resources that enable asynchronous threading with a RAJA::forall. All other calls
default to using the Host resource until further support is added.

The Resource type that is passed to a RAJA::forall call must be a concrete type. This is to allow for a compile-time
assertion that the resource is not compatible with the given execution policy. For example:

using ExecPol = RAJA::cuda_exec_async<BLOCK_SIZE>;
RAJA::resources::Cuda my_cuda_res;
RAJA::resources::Resource my_res{RAJA::resources::Cuda()};
RAJA::resources::Host my_host_res;

RAJA::forall<ExecPol>(my_cuda_res,) // Compiles.
RAJA::forall<ExecPol>(my_res,) // Compilation Error. Not Concrete.
RAJA::forall<ExecPol>(my_host_res,) // Compilation Error. Mismatched Resource
→˓and Exec Policy.

Below is a list of the currently available concrete resource types and their execution policy suport.

52 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Resource Policies supported
Cuda

cuda_exec
cuda_exec_async
cuda_exec_explicit

Hip

hip_exec
hip_exec_async

Omp*

omp_target_parallel_for_exec
omp_target_parallel_for_exec_n

Host

loop_exec
seq_exec
openmp_parallel_exec
omp_for_schedule_exec
omp_for_nowait_schedule_exec
simd_exec
tbb_for_dynamic
tbb_for_static

Note: The RAJA::resources::Omp resource is still under development.

IndexSet policies require two execution policies (see IndexSets). Currently, users may only pass a single resource to
a forall method taking an IndexSet argument. This resource is used for the inner execution of each Segment in the
IndexSet:

using ExecPol = RAJA::ExecPolicy<RAJA::seq_segit, RAJA::cuda_exec<256>>;
RAJA::forall<ExecPol>(my_cuda_res, iset,);

When a resource is not provided by the user, a default resource is assigned, which can be accessed in a number of
ways. It can be accessed directly from the concrete resource type:

RAJA::resources::Cuda my_default_cuda = RAJA::resources::Cuda::get_default();

The resource type can also be deduced from an execution policy:

using Res = RAJA::resources::get_resource<ExecPol>::type;
Res r = Res::get_default();

Finally, the resource type can be deduced from an execution policy:

auto my_resource = RAJA::resources::get_default_resource<ExecPol>();

6.1. RAJA User Guide 53

RAJA Documentation, Release 2022.03.1

Note: For CUDA and HIP, the default resource is NOT the CUDA or HIP default stream. It is its own
stream defined in camp/include/resource/. This is an attempt to break away from some of the issues that
arise from the synchronization behaviour of the CUDA and HIP default streams. It is still possible to use the
CUDA and HIP default streams as the default resource. This can be enabled by defining the environment variable
CAMP_USE_PLATFORM_DEFAULT_STREAM before compiling RAJA in a project.

Events

Event objects allow users to wait or query the status of a resource’s action. An event can be returned from a resource:

RAJA::resources::Event e = my_res.get_event();

Getting an event like this enqueues an event object for the given back-end.

Users can call the blocking wait function on the event:

e.wait();

Preferably, users can enqueue the event on a specific resource, forcing only that resource to wait for the event:

my_res.wait_for(&e);

The usage allows one to set up dependencies between resource objects and RAJA::forall calls.

Note: An Event object is only created if a user explicitly sets the event returned by the RAJA::forall call to a
variable. This avoids unnecessary event objects being created when not needed. For example:

forall<cuda_exec_async<BLOCK_SIZE>>(my_cuda_res, ...

will not generate a cudaStreamEvent, whereas:

RAJA::resources::Event e = forall<cuda_exec_async<BLOCK_SIZE>>(my_cuda_res, ...

will generate a cudaStreamEvent.

Example

This example executes three kernels across two cuda streams on the GPU with a requirement that the first and second
kernel finish execution before launching the third. It also demonstrates copying memory from the device to host on a
resource:

First, define two concrete CUDA resources and one host resource:

RAJA::resources::Cuda res_gpu1;
RAJA::resources::Cuda res_gpu2;
RAJA::resources::Host res_host;

using EXEC_POLICY = RAJA::cuda_exec_async<GPU_BLOCK_SIZE>;

Next, allocate data for two device arrays and one host array:

54 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

int* d_array1 = res_gpu1.allocate<int>(N);
int* d_array2 = res_gpu2.allocate<int>(N);
int* h_array = res_host.allocate<int>(N);

Then, Execute a kernel on CUDA stream 1 res_gpu1:

RAJA::forall<EXEC_POLICY>(res_gpu1, RAJA::RangeSegment(0,N),
[=] RAJA_HOST_DEVICE (int i) {

d_array1[i] = i;
}

);

and execute another kernel on CUDA stream 2 res_gpu2 storing a handle to an Event object to a local variable:

RAJA::resources::Event e = RAJA::forall<EXEC_POLICY>(res_gpu2, RAJA::RangeSegment(0,
→˓N),

[=] RAJA_HOST_DEVICE (int i) {
d_array2[i] = -1;

}
);

The next kernel on res_gpu1 requires that the last kernel on res_gpu2 finish first. Therefore, we enqueue a wait
on res_gpu1 that enforces this:

res_gpu2.wait_for(&e);

Execute the second kernel on res_gpu1 now that the two previous kernels have finished:

RAJA::forall<EXEC_POLICY>(res_gpu1, RAJA::RangeSegment(0,N),
[=] RAJA_HOST_DEVICE (int i) {

d_array1[i] *= d_array2[i];
}

);

We can enqueue a memcpy operation on res_gpu1 to move data from the device to the host:

res_gpu1.memcpy(h_array, d_array1, sizeof(int) * N);

Lastly, we use the copied data on the host side:

bool check = true;
RAJA::forall<RAJA::seq_exec>(res_host, RAJA::RangeSegment(0,N),
[&check, h_array] (int i) {

if(h_array[i] != -i) {check = false;}
}

);

Atomics

RAJA provides portable atomic operations that can be used to update values at arbitrary memory locations while
avoiding data races. They are described in this section.

A complete working example code that shows RAJA atomic usage can be found in Computing a Histogram with
Atomic Operations.

Note:

6.1. RAJA User Guide 55

RAJA Documentation, Release 2022.03.1

• All RAJA atomic operations are in the namespace RAJA.

Atomic Operations

RAJA atomic support includes a variety of the most common atomic operations.

Note:

• Each RAJA atomic operation is templated on an atomic policy.

• Each method described in the table below returns the value of the potentially modified argument (i.e., *acc)
immediately before the atomic operation is applied, in case it is needed by a user.

• See Atomics for details about CUDA atomic operations.

Arithmetic

• atomicAdd< atomic_policy >(T* acc, T value) - Add value to *acc.

• atomicSub< atomic_policy >(T* acc, T value) - Subtract value from *acc.

Min/max

• atomicMin< atomic_policy >(T* acc, T value) - Set *acc to min of *acc and value.

• atomicMax< atomic_policy >(T* acc, T value) - Set *acc to max of *acc and value.

Increment/decrement

• atomicInc< atomic_policy >(T* acc) - Add 1 to *acc.

• atomicDec< atomic_policy >(T* acc) - Subtract 1 from *acc.

• atomicInc< atomic_policy >(T* acc, T compare) - Add 1 to *acc if *acc < compare, else set
*acc to zero.

• atomicDec< atomic_policy >(T* acc, T compare) - Subtract 1 from *acc if *acc != 0 and *acc
<= compare, else set *acc to compare.

Bitwise operations

• atomicAnd< atomic_policy >(T* acc, T value) - Bitwise ‘and’ equivalent: Set *acc to *acc &
value. Only works with integral data types.

• atomicOr< atomic_policy >(T* acc, T value) - Bitwise ‘or’ equivalent: Set *acc to *acc |
value. Only works with integral data types.

• atomicXor< atomic_policy >(T* acc, T value) - Bitwise ‘xor’ equivalent: Set *acc to *acc ^
value. Only works with integral data types.

56 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Replace

• atomicExchange< atomic_policy >(T* acc, T value) - Replace *acc with value.

• atomicCAS< atomic_policy >(T* acc, Tcompare, T value) - Compare and swap: Replace
*acc with value if and only if *acc is equal to compare.

Here is a simple example that shows how to use an atomic operation to compute an integral sum on a CUDA GPU
device:

//
// Use CUDA UM to share data pointer with host and device code.
// RAJA mechanics work the same way if device data allocation
// and host-device copies are done with traditional cudaMalloc
// and cudaMemcpy.
//
int* sum = nullptr;
cudaMallocManaged((void **)&sum, sizeof(int));
cudaDeviceSynchronize();

*sum = 0;

RAJA::forall< RAJA::cuda_exec<BLOCK_SIZE> >(RAJA::RangeSegment(0, N),
[=] RAJA_DEVICE (RAJA::Index_type i) {

RAJA::atomicAdd< RAJA::cuda_atomic >(sum, 1);

});

After this kernel executes, the value reference by ‘sum’ will be ‘N’.

AtomicRef

RAJA also provides an atomic interface similar to the C++20 ‘std::atomic_ref’, but which works for arbitrary memory
locations. The class RAJA::AtomicRef provides an object-oriented interface to the atomic methods described
above. For example, after the following operations:

double val = 2.0;
RAJA::AtomicRef<double, RAJA::omp_atomic > sum(&val);

sum++;
++sum;
sum += 1.0;

the value of ‘val’ will be 5.

Atomic Policies

For more information about available RAJA atomic policies, please see Atomic Policies.

CUDA Atomics Architecture Dependencies

The internal implementations for RAJA atomic operations may vary depending on which CUDA architecture is avail-
able and/or specified when the RAJA is configured for compilation. The following rules apply when the following
CUDA architecture level is chosen:

6.1. RAJA User Guide 57

RAJA Documentation, Release 2022.03.1

• CUDA architecture is lower than ‘sm_35‘

– Certain atomics will be implemented using CUDA atomicCAS (Compare and Swap).

• CUDA architecture is ‘sm_35‘ or higher

– CUDA native 64-bit unsigned atomicMin, atomicMax, atomicAnd, atomicOr, atomicXor are used.

• CUDA architecture is ‘sm_60‘ or higher

– CUDA native 64-bit double atomicAdd is used.

DESUL Atomics Support

RAJA provides support for the use of DESUL Atomics as an alternative backend to the default implementation of
RAJA atomics. DESUL atomics are considered an experimental feature in RAJA at this point. DESUL atomics may
impact the performance of some atomic functions. While switching to DESUL atomics typically yields positive or
neutral performance results, some atomic operations may perform worse when using DESUL.

To enable DESUL Atomics:

1. Ensure that RAJA and its dependencies are configured to use C++14.

2. Set RAJA_ENABLE_DESUL_ATOMICS=On.

Enabling DESUL Atomics alters RAJA atomic functions to be wrapper-functions for their DESUL counterparts. This
removes the need for user code changes to switch between DESUL and RAJA implementations. The exception to
this is when RAJA atomic helper functions are used instead of the backwards-compatible API functions specified by
Atomic Operations. By helper functions, we mean the RAJA atomic methods which take a reduction policy object as
the first argument, instead of specifying the reduction policy type as a template parameter.

DESUL atomic functions are compiled with the proper back-end implementation based on the scope in which they are
called, which removes the need to specify atomic policies for target back-ends. As a result, atomic policies such as
cuda_atomic or omp_atomic are ignored when DESUL is enabled, but are still necessary to pass in as parameters
to the RAJA API. This will likely change in the future and RAJA atomic policies will be removed.

Scans

RAJA provides portable parallel scan operations, which are basic parallel algorithm building blocks. They are de-
scribed in this section.

A few important notes:

Note:

• All RAJA scan operations are in the namespace RAJA.

• Each RAJA scan operation is a template on an execution policy parameter. The same policy types used for
RAJA::forall methods may be used for RAJA scans.

• RAJA scan operations accept an optional operator argument so users can perform different types of scan oper-
ations. If no operator is given, the default is a ‘plus’ operation and the result is a prefix-sum.

Also:

58 Chapter 6. RAJA Copyright and License Information

https://github.com/desul/desul

RAJA Documentation, Release 2022.03.1

Note: For scans using the CUDA back-end, RAJA uses the NVIDIA CUB library internally. The CMake variable
CUB_DIR will be automatically set to the location of the CUB library when CUDA is enabled. Details for using a
different version of the CUB library are available in the Getting Started With RAJA section.

Note: For scans using the HIP back-end, RAJA uses the AMD rocPRIM library internally. The CMake variable
ROCPRIM_DIR will be automatically set to the location of the rocPRIM library when HIP is enabled. Details for
using a different version of the rocPRIM library are available in the Getting Started With RAJA section.

Please see the Parallel Scan Operations tutorial section for usage examples of RAJA scan operations.

Scan Operations

In general, a scan operation takes a sequence of numbers ‘x’ and a binary associative operator ‘op’ as input and
produces another sequence of numbers ‘y’ as output. Each element of the output sequence is formed by applying the
operator to a subset of the input. Scans come in two flavors: inclusive and exclusive.

An inclusive scan takes the input sequence

x = { x0, x1, x2, . . . }

and calculates the output sequence:

y = { y0, y1, y2, . . . }

using the recursive definition

y0= x0

yi= yi-1op xi, for each i > 0

An exclusive scan is similar, but the output of an exclusive scan is different from the output of an inclusive scan in two
ways. First, the first element of the output is the identity of the operator used. Second, the rest of the output sequence
is the same as inclusive scan, but shifted one position to the right; i.e.,

y0= opidentity

yi= yi-1 op xi-1, for each i > 0

If you would like more information about scan operations, a good overview of what they are and why they are useful
can be found in Blelloch Scan Lecture Notes. A nice presentation that describes how parallel scans are implemented
is Va Tech Scan Lecture

RAJA Inclusive Scans

RAJA inclusive scan operations look like the following:

• RAJA::inclusive_scan< exec_policy >(in_container, out_container)

• RAJA::inclusive_scan< exec_policy >(in_container, out_container, operator)

Here, ‘in_container’ and ‘out_container’ are random access ranges of some numeric scalar type whose elements are
the input and output sequences of the scan, respectively. The scalar type must be the same for both arrays. The first
scan operation above will be a prefix-sum since there is no operator argument given; i.e., the output array will contain
partial sums of the input array. The second scan will apply the operator that is passed. Note that container arguments
can be generated from iterators using RAJA::make_span(begin, len).

6.1. RAJA User Guide 59

https://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf
http://people.cs.vt.edu/yongcao/teaching/cs5234/spring2013/slides/Lecture10.pdf

RAJA Documentation, Release 2022.03.1

RAJA also provides in-place scans:

• RAJA::inclusive_scan_inplace< exec_policy >(in_container)

• RAJA::inclusive_scan_inplace< exec_policy >(in_container, <operator>)

An in-place scan generates the same output sequence as a non-inplace scan. However, an in-place scan does not take
separate input and output arrays and the result of the scan operation will appear in-place in the input array.

RAJA Exclusive Scans

Using RAJA exclusive scans is essentially the same as for inclusive scans:

• RAJA::exclusive_scan< exec_policy >(in_container, out_container)

• RAJA::exclusive_scan< exec_policy >(in_container, out_container, operator)

and

• RAJA::exclusive_scan_inplace< exec_policy >(in_container)

• RAJA::exclusive_scan_inplace< exec_policy >(in_container, <operator>)

RAJA Scan Operators

RAJA provides a variety of operators that can be used to perform different types of scans, such as:

• RAJA::operators::plus<T>

• RAJA::operators::minus<T>

• RAJA::operators::multiplies<T>

• RAJA::operators::divides<T>

• RAJA::operators::minimum<T>

• RAJA::operators::maximum<T>

Note:

• All RAJA scan operators are in the namespace RAJA::operators.

Scan Policies

For information about RAJA execution policies to use with scan operations, please see Policies.

Sorts

RAJA provides portable parallel sort operations, which are basic parallel algorithm building blocks. They are described
in this section.

A few important notes:

Note:

• All RAJA sort operations are in the namespace RAJA.

60 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

• Each RAJA sort operation is a template on an execution policy parameter. The same policy types used for
RAJA::forall methods may be used for RAJA sorts.

• RAJA sort operations accept an optional comparator argument so users can perform different types of sort
operations. If no operator is given, the default is a less than operation and the result is non-decreasing.

Also:

Note:

• For sorts using the CUDA back-end, RAJA uses the implementations provided by the NVIDIA CUB library.
For information please see build-external-tpl.

• For sorts using the HIP back-end, RAJA uses the implementations provided by the AMD rocPRIM library. For
information please see build-external-tpl.

• The RAJA CUDA and HIP back-ends only support sorting arithmetic types using RAJA operators ‘less than’
and ‘greater than’.

Please see the Parallel Sort Operations tutorial section for usage examples of RAJA sort operations.

Sort Operations

In general, a sort operation takes a sequence of numbers x and a binary comparison operator op that forms a strict weak
ordering of elements in input sequence x and produces a sequence of numbers y as output. The output sequence is a
permutation of the input sequence where each pair of elements a and b, where a is before b in the output sequence,
satisfies !(b op a). Sorts are stable if they always preserve the order of equivalent elements, where equivalent
elements satisfy !(a op b) && !(b op a).

A stable sort takes an input sequence x where ai appears before aj if i < j when ai and aj are equivalent for any i != j.

x = { a0, b0, a1, . . . }

and calculates the stably sorted output sequence y that preserves the order of equivalent elements. That is, the sorted
sequence where element ai appears before the equivalent element aj if i < j:

y = { a0, a1, b0, . . . }

An unstable sort may not preserve the order of equivalent elements and may produce either of the following output
sequences:

y = { a0, a1, b0, . . . }

or

y = { a1, a0, b0, . . . }

RAJA Unstable Sorts

RAJA unstable sort operations look like the following:

• RAJA::sort< exec_policy >(container)

• RAJA::sort< exec_policy >(container, comparator)

For example, sorting an array with this sequence of values:

6.1. RAJA User Guide 61

RAJA Documentation, Release 2022.03.1

6 7 2 1 0 9 4 8 5 3 4 9 6 3 7 0 1 8 2 5

with a sequential unstable sort operation:

RAJA::sort<RAJA::seq_exec>(RAJA::make_span(out, N));

produces the out array with this sequence of values:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Note that the syntax is essentially the same as Parallel Scan Operations. Here, container is a random access range
of elements. container provides access to the input sequence and contains the output sequence at the end of sort.
The first sort operation listed above will be a non-decreasing sort since there is no comparator argument given; i.e., the
sequences will be reordered in-place using operator::less. The second sort will apply the comparator that is passed into
the function. Note that the container argument can be generated from iterators using RAJA::make_span(begin,
len).

RAJA also provides sort operations that operate on key-value pairs stored separately:

• RAJA::sort_pairs< exec_policy >(keys_container, vals_container)

• RAJA::sort_pairs< exec_policy >(keys_container, vals_container,
comparator)

RAJA::sort_pairsmethods generate the same output sequence of keys in keys_container as RAJA::sort
does in container and reorders the sequence of values in vals_container by permuting the sequence of values
in the same manner as the sequence of keys; i.e. the sequence of pairs is sorted based on comparing their keys.

Note: The comparator used in RAJA::sort_pairs only compares keys.

RAJA Stable Sorts

RAJA stable sorts are essentially the same as unstable sorts:

• RAJA::stable_sort< exec_policy >(container)

• RAJA::stable_sort< exec_policy >(container, comparator)

RAJA also provides stable sort pairs that operate on key-value pairs stored separately:

• RAJA::stable_sort_pairs< exec_policy >(keys_container, vals_container)

• RAJA::stable_sort_pairs< exec_policy >(keys_container, vals_container,
comparator)

RAJA Comparison Operators

RAJA provides two operators that can be used to produce different ordered sorts:

• RAJA::operators::less<T>

• RAJA::operators::greater<T>

Note: All RAJA comparison operators are in the namespace RAJA::operators.

62 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Sort Policies

For information about RAJA execution policies to use with sort operations, please see Policies.

Local Array

This section introduces RAJA local arrays. A RAJA::LocalArray is an array object with one or more dimensions
whose memory is allocated when a RAJA kernel is executed and only lives within the scope of the kernel execution.
To motivate the concept and usage, consider a simple C++ example in which we construct and use two arrays in nested
loops:

for(int k = 0; k < 7; ++k) { //k loop

int a_array[7][5];
int b_array[5];

for(int j = 0; j < 5; ++j) { //j loop
a_array[k][j] = 5*k + j;
b_array[j] = 7*j + k;

}

for(int j = 0; j < 5; ++j) { //j loop
printf("%d %d \n",a_array[k][j], b_array[j]);

}

}

Here, two stack-allocated arrays are defined inside the outer ‘k’ loop and used in both inner ‘j’ loops. This loop pattern
may be also be expressed using RAJA local arrays in a RAJA::kernel_param kernel. We show a RAJA variant
below, which matches the implementation above, and then discuss its constituent parts:

//
// Define two local arrays
//

using RAJA_a_array = RAJA::LocalArray<int, RAJA::Perm<0, 1>, RAJA::SizeList<5,7> >;
RAJA_a_array kernel_a_array;

using RAJA_b_array = RAJA::LocalArray<int, RAJA::Perm<0>, RAJA::SizeList<5> >;
RAJA_b_array kernel_b_array;

//
// Define the kernel execution policy
//

using POL = RAJA::KernelPolicy<
RAJA::statement::For<1, RAJA::loop_exec,
RAJA::statement::InitLocalMem<RAJA::cpu_tile_mem, RAJA::ParamList<0,

→˓1>,
RAJA::statement::For<0, RAJA::loop_exec,
RAJA::statement::Lambda<0>

>,
RAJA::statement::For<0, RAJA::loop_exec,
RAJA::statement::Lambda<1>

>

(continues on next page)

6.1. RAJA User Guide 63

RAJA Documentation, Release 2022.03.1

(continued from previous page)

>
>

>;

//
// Define the kernel
//

RAJA::kernel_param<POL> (RAJA::make_tuple(RAJA::RangeSegment(0,5),
RAJA::RangeSegment(0,7)),

RAJA::make_tuple(kernel_a_array, kernel_b_array),

[=] (int j, int k, RAJA_a_array& kernel_a_array, RAJA_b_array& kernel_b_array) {
a_array(k, j) = 5*k + j;
b_array(j) = 5*k + j;

},

[=] (int j, int k, RAJA_a_array& a_array, RAJA_b_array& b_array) {
printf("%d %d \n", kernel_a_array(k, j), kernel_b_array(j));

}

);

The RAJA version defines two RAJA::LocalArray types, one two-dimensional and one one-dimensional and
creates an instance of each type. The template arguments for the RAJA::LocalArray types are:

• Array data type

• Index permutation (see View and Layout for more on RAJA permutations)

• Array dimensions

Note: RAJA::LocalArray types support arbitrary dimensions and sizes.

The kernel policy is a two-level nested loop policy (see Complex Loops (RAJA::kernel) for information about RAJA
kernel policies) with a statement type RAJA::statement::InitLocalMem inserted between the nested for-
loops which allocates the memory for the local arrays when the kernel executes. The InitLocalMem statement
type uses a ‘CPU tile’ memory type, for the two entries ‘0’ and ‘1’ in the kernel parameter tuple (second argument to
RAJA::kernel_param). Then, the inner initialization loop and inner print loop are run with the respective lambda
bodies defined in the kernel.

Memory Policies

RAJA::LocalArray supports CPU stack-allocated memory and CUDA GPU shared memory and thread private
memory. See Local Array Memory Policies for a discussion of available memory policies.

Loop Tiling

In this section, we discuss RAJA statements that can be used to tile nested for-loops. Typical loop tiling involves
partitioning an iteration space into a collection of “tiles” and then iterating over tiles in outer loops and entries within
each tile in inner loops. Many scientific computing algorithms can benefit from loop tiling due to more efficient cache
usage on a CPU or use of GPU shared memory.

64 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

For example, an operation performed using a for-loop with a range of [0, 10):

for (int i=0; i<10; ++i) {
// loop body using index 'i'

}

May be expressed as a loop nest that iterates over five tiles of size two:

int numTiles = 5;
int tileDim = 2;
for (int t=0; t<numTiles; ++t) {
for (int j=0; j<tileDim; ++j) {
int i = j + tileDim*t; // Calculate global index 'i'
// loop body using index 'i'

}
}

Next, we show how this tiled loop can be represented using RAJA. Then, we present variations on it that illustrate the
usage of different RAJA kernel statement types.

using KERNEL_EXEC_POL =
RAJA::KernelPolicy<
RAJA::statement::Tile<0, RAJA::tile_fixed<2>, RAJA::seq_exec,

RAJA::statement::For<0, RAJA::seq_exec,
RAJA::statement::Lambda<0>

>
>

>;

RAJA::kernel<KERNEL_EXEC_POL>(RAJA::make_tuple(RAJA::RangeSegment(0,10)),
[=] (int i) {
// loop body using index 'i'

});

In RAJA, the simplest way to tile an iteration space is to use RAJA statement::Tile and statement::For
statement types. A statement::Tile type is similar to a statement::For type, but takes a tile size as
the second template argument. The statement::Tile construct generates the outer loop over tiles and the
statement::For statement iterates over each tile. Nested together, as in the example, these statements will pass
the global index ‘i’ to the loop body in the lambda expression as in the non-tiled version above.

Note: When using statement::Tile and statement::For types together to define a tiled loop structure, the
integer passed as the first template argument to each statement type must be the same. This indicates that they both
apply to the same item in the iteration space tuple passed to the RAJA::kernel methods.

RAJA also provides alternative tiling and for statements that provide the tile number and local tile index, if needed
inside the kernel body, as shown below:

using KERNEL_EXEC_POL2 =
RAJA::KernelPolicy<
RAJA::statement::TileTCount<0, RAJA::statement::Param<0>,

RAJA::tile_fixed<2>, RAJA::seq_exec,
RAJA::statement::ForICount<0, RAJA::statement::Param<1>,

RAJA::seq_exec,
RAJA::statement::Lambda<0>

>
>

(continues on next page)

6.1. RAJA User Guide 65

RAJA Documentation, Release 2022.03.1

(continued from previous page)

>;

RAJA::kernel_param<KERNEL_EXEC_POL2>(RAJA::make_tuple(RAJA::RangeSegment(0,10)),
RAJA::make_tuple((int)0, (int)0),

[=](int i, int t, int j) {

// i - global index
// t - tile number
// j - index within tile
// Then, i = j + 2*t (2 is tile size)

});

The statement::TileTCount type allows the tile number to be accessed as a lambda argument and the
statement::ForICount type allows the local tile loop index to be accessed as a lambda argument. These values
are specified in the tuple, which is the second argument passed to the RAJA::kernel_param method above. The
statement::Param<#> type appearing as the second template parameter for each statement type indicates which
parameter tuple entry the tile number or local tile loop index is passed to the lambda, and in which order. Here, the tile
number is the second lambda argument (tuple parameter ‘0’) and the local tile loop index is the third lambda argument
(tuple parameter ‘1’).

Note: The global loop indices always appear as the first lambda expression arguments. Then, the parameter tuples
identified by the integers in the Param statement types given for the loop statement types follow.

Plugins

RAJA supports user-made plugins that may be loaded either at compilation time (static plugins) or during runtime
(dynamic plugins). These two methods are not mutually exclusive, as plugins loaded statically can be run alongside
plugins that are loaded dynamically.

Using RAJA Plugins

Static vs Dynamic Loading

Static loading is done at compile time and requires recompilation in order to add, remove, or change a plugin. This
is arguably the easier method to implement, requiring only simple file linking to make work. However, recompilation
may get tedious and resource-heavy when working with many plugins or on large projects. In these cases, it may be
better to load plugins dynamically, requiring no recompilation of the project most of the time.

Dynamic loading is done at runtime and only requires the recompilation or moving of plugin files in order to add,
remove, or change a plugin. This will likely require more work to set up, but in the long run may save time and
resources. RAJA checks the environment variable RAJA_PLUGINS for a path to a plugin or plugin directory, and
automatically loads them at runtime. This means that a plugin can be added to a project as easily as making a shared
object file and setting RAJA_PLUGINS to the appropriate path.

Quick Start Guide

Static Plugins

66 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

1. Build RAJA normally.

2. Either use an #include statement within the code or compiler flags to load your plugin file with your project
at compile time. A brief example of this would be something like g++ project.cpp plugin.cpp
-lRAJA -fopenmp -ldl -o project.

3. When you run your project, your plugin should work.

Dynamic Plugins

1. Build RAJA normally.

2. Compile your plugin to be a shared object file with a .so extension. A brief example of this would be something
like g++ plugin.cpp -lRAJA -fopenmp -fPIC -shared -o plugin.so.

3. Set the environment variable RAJA_PLUGINS to be the path of your .so file. This can either be the path to its
directory or to the shared object file itself. If the path is to a directory, it will attempt to load all .so files in that
directory.

4. When you run your project, your plugins should work.

Interfacing with Plugins

The RAJA plugin API allows for limited interfacing between a project and a plugin. There are a couple of functions
that allow for this to take place, init_plugins and finalize_plugins. These will call the corresponding
init and finalize functions, respectively, of every currently loaded plugin. It’s worth noting that plugins don’t
require either an init or finalize function by default.

• RAJA::util::init_plugins(); - Will call the init function of every currently loaded plugin.

• RAJA::util::init_plugins("path/to/plugins"); - Does the same as the above call to
init_plugins, but will also dynamically load plugins located at the path specified.

• RAJA::util::finalize_plugins(); - Will call the finalize function of every currently loaded
plugin.

Creating Plugins For RAJA

Plugins are classes derived from the RAJA::util::PluginStrategy base class and implement the required
functions for the API. An example implementation can be found at the bottom of this page.

Functions

The preLaunch and postLaunch functions are automatically called by RAJA before and after executing a kernel
that uses RAJA::forall or RAJA::kernel methods.

• void init(const PluginOptions& p) override {} - runs on all plugins when a user calls
init_plugins

• void preCapture(const PluginContext& p) override {} - is called before lambda capture
in RAJA::forall or RAJA::kernel.

• void postCapture(const PluginContext& p) override {} - is called after lambda capture
in RAJA::forall or RAJA::kernel.

• void preLaunch(const PluginContext& p) override {} - is called before RAJA::forall
or RAJA::kernel runs a kernel.

6.1. RAJA User Guide 67

RAJA Documentation, Release 2022.03.1

• void postLaunch(const PluginContext& p) override {} - is called after RAJA::forall
or RAJA::kernel runs a kernel.

• void finalize() override {} - Runs on all plugins when a user calls finalize_plugins. This
will also unload all currently loaded plugins.

init and finalize are never called by RAJA by default and are only called when a user calls
RAJA::util::init_plugins() or RAJA::util::finalize_plugin(), respectively.

Static Loading

If a plugin is to be loaded into a project at compile time, adding the following method call will add the plugin to the
RAJA PluginRegistry and will be loaded every time the compiled executable is run. This requires the plugin to
be loaded with either an #include statement within a project or with source code line such as:

static RAJA::util::PluginRegistry::add<PluginName> P("Name", "Description");

Dynamic Loading

If a plugin is to be dynamically loaded in a project at run time, the RAJA plugin API requires a few conditions to be
met. The following must be true about the plugin, not necessarily of the project using it.

1. The plugin must have the following factory function. This will return a pointer to an instance of your plugin.
Note that using extern "C" is required to search for the getPlugin() method call for the dynamically
loaded plugin correctly:

extern "C" RAJA::util::PluginStrategy *getPlugin ()
{
return new MyPluginName;

}

2. The plugin must be compiled to be a shared object with a .so extension. A simple example containing
required flags would be: g++ plugin.cpp -lRAJA -fopenmp -fPIC -shared -o plugin.so.

At the moment, RAJA will only attempt to load files with .so extensions. It’s worth noting why these flags (or
their equivalents) are important.

• -lRAJA -fopenmp are standard flags for compiling the RAJA library.

• -fPIC tells the compiler to produce position independent code, which prevents conflicts in the address
space of the executable.

• -shared will let the compiler know that you want the resulting object file to be shared, removing the
need for a main as well as giving dynamically loaded executables access to functions flagged with extern
"C".

3. The RAJA_PLUGINS environment variable has been set, or a user has made a call to
RAJA::util::init_plugins("path"); with a path specified to either a directory or a .so file. It’s
worth noting that these are not mutually exclusive. RAJA will look for plugins based on the environment vari-
able on program startup and new plugins may be loaded after that by calling the init_plugins() method.

Example Plugin Implementation

The following is an example plugin that simply will print out the number of times a kernel has been launched and has
the ability to be loaded either statically or dynamically.

68 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

#include "RAJA/util/PluginStrategy.hpp"

#include <iostream>

class CounterPlugin :
public RAJA::util::PluginStrategy

{
public:
void preCapture(const RAJA::util::PluginContext& p) override {
if (p.platform == RAJA::Platform::host)
{

std::cout << " [CounterPlugin]: Capturing host kernel for the " << ++host_
→˓capture_counter << " time!" << std::endl;

}
else
{

std::cout << " [CounterPlugin]: Capturing device kernel for the " << ++device_
→˓capture_counter << " time!" << std::endl;

}
}

void preLaunch(const RAJA::util::PluginContext& p) override {
if (p.platform == RAJA::Platform::host)
{

std::cout << " [CounterPlugin]: Launching host kernel for the " << ++host_
→˓launch_counter << " time!" << std::endl;

}
else
{

std::cout << " [CounterPlugin]: Launching device kernel for the " << ++device_
→˓launch_counter << " time!" << std::endl;

}
}

private:
int host_capture_counter;
int device_capture_counter;
int host_launch_counter;
int device_launch_counter;

};

// Statically loading plugin.
static RAJA::util::PluginRegistry::add<CounterPlugin> P("Counter", "Counts number of
→˓kernel launches.");

// Dynamically loading plugin.
extern "C" RAJA::util::PluginStrategy *getPlugin ()
{

return new CounterPlugin;
}

CHAI Plugin

RAJA provides abstractions for parallel execution, but does not support a memory model for managing data in het-
erogeneous memory spaces. The CHAI library provides an array abstraction that integrates with RAJA to enable
automatic copying of data at runtime to the proper execution memory space for a RAJA-based kernel based on the

6.1. RAJA User Guide 69

https://github.com/LLNL/CHAI

RAJA Documentation, Release 2022.03.1

RAJA exection policy used to execute the kernel. Then, the data can be accessed inside the kernel as needed.

To build CHAI with RAJA integration, you need to download and install CHAI with the ENABLE_RAJA_PLUGIN
option turned on. Please see the CHAI project for details.

After CHAI has been built with RAJA support enabled, applications can use CHAI ManangedArray objects to
access data inside a RAJA kernel. For example:

chai::ManagedArray<float> array(1000);

RAJA::forall<RAJA::cuda_exec<16> >(0, 1000, [=] __device__ (int i) {
array[i] = i * 2.0f;

});

RAJA::forall<RAJA::seq_exec>(0, 1000, [=] (int i) {
std::cout << "array[" << i << "] is " << array[i] << std::endl;

});

Here, the data held by array is allocated on the host CPU. Then, it is initialized on a CUDA GPU device. CHAI
sees that the data lives on the CPU and is needed in a GPU device data environment since it is used in a kernel that
will run with a RAJA CUDA execution policy. So it copies the data from CPU to GPU, making it available for access
in the RAJA kernel. Next, it is printed in the second kernel which runs on the CPU (indicated by the RAJA sequential
execution policy). So CHAI copies the data back to the host CPU. All necessary data copies are done transparently on
demand for each kernel.

WorkGroup

In this section, we describe the basics of RAJA workgroups. RAJA::WorkPool, RAJA::WorkGroup, and
RAJA::WorkSite class templates comprise the RAJA interface for grouped loop execution. RAJA::WorkPool
takes a set of simple loops (e.g., non-nested loops) and instantiates a RAJA::WorkGroup. RAJA::WorkGroup
represents an executable form of those loops and when run makes a RAJA::WorkSite. RAJA::WorkSite holds
all of the resources used for a single run of the loops. Be aware that the RAJA workgroup constructs API is still being
developed and may change in later RAJA releases.

Note:

• All workgroup constructs are in the namespace RAJA.

• The RAJA::WorkPool, RAJA::WorkGroup, and RAJA::WorkSite class templates are templated on:

– a WorkGroup policy which is composed of:

* a work execution policy.

* a work ordering policy.

* a work storage policy.

– an index type that is the first argument to the loop bodies.

– a list of extra argument types that are the rest of the arguments to the loop bodies.

– an allocator type to be used for the memory used to store and manage the loop bodies.

• The RAJA::WorkPool::enqueue method takes two arguments:

– an iteration space object, and

– a lambda expression representing the loop body.

70 Chapter 6. RAJA Copyright and License Information

https://github.com/LLNL/CHAI

RAJA Documentation, Release 2022.03.1

• Multi-dimensional loops can be used with RAJA::CombiningAdapter see, MultiDimensional loops using
Simple loop APIs (RAJA::CombiningAdapter).

Examples showing how to use RAJA workgroup methods may be found in the RAJA Tutorial.

For more information on RAJA work policies and iteration space constructs, see Policies and Indices, Segments, and
IndexSets, respectively.

Policies

The behavior of the RAJA workgroup constructs is determined by a policy. The RAJA::WorkGroupPolicy has
three components, a work execution policy, a work ordering policy, and a work storage policy. RAJA::WorkPool,
RAJA::WorkGroup, and RAJA::WorkSite class templates all take the same policy and template arguments. For
example:

using workgroup_policy = RAJA::WorkGroupPolicy <
RAJA::seq_work,
RAJA::ordered,
RAJA::ragged_array_of_objects >;

is a workgroup policy that will run loops sequentially on the host in the order they were enqueued and store the loop
bodies sequentially in single buffer in memory.

The work execution policy acts like the execution policies used with RAJA::forall and determines the backend
used to run the loops and the parallelism within each loop.

Work Execution
Policies

Brief description

seq_work Execute loop iterations strictly sequentially.
simd_work Execute loop iterations sequentially and try to force generation of SIMD in-

structions via compiler hints in RAJA internal implementation.
loop_work Execute loop iterations sequentially and allow compiler to generate any opti-

mizations.
omp_work Execute loop iterations in parallel using OpenMP.
tbb_work Execute loop iterations in parallel using TBB.
cuda_work<BLOCK_SIZE>,Execute loop iterations in parallel
cuda_work_async<BLOCK_SISZE>using a CUDA kernel launched with given thread-block size.
omp_target_work Execute loop iterations in parallel using OpenMP target.

The work ordering policy acts like the segment iteration execution policies when RAJA::forall is used with a
RAJA::IndexSet and determines the backend used when iterating over the loops and the parallelism between each
loop.

The work storage policy determines the strategy used to allocate and layout the storage used to store the ranges, loop
bodies, and other data necessary to implement the workstorage constructs.

6.1. RAJA User Guide 71

RAJA Documentation, Release 2022.03.1

Work Storage
Policies

Brief description

ar-
ray_of_pointers

Store loop data in individual allocations and keep an array of pointers to the indi-
vidual loop data allocations.

ragged_array_of_objectsStore loops sequentially in a single allocation, reallocating and moving the loop
data items as needed, and keep an array of offsets to the individual loop data items.

con-
stant_stride_array_of_objects

Store loops sequentially in a single allocation with a consistent stride between loop
data items, reallocating and/or changing the stride and moving the loop data items
as needed.

Arguments

The next two template arguments to the workgroup constructs determine the call signature of the loop bodies that may
be added to the workgroup. The first is an index type which is the first parameter in the call signature. Next is a list
of types called RAJA::xargs, short for extra arguments, that gives the rest of the types of the parameters in the call
signature. The values of the extra arguments are passed in when the loops are run, see WorkGroup. For example:

int, RAJA::xargs<>

can be used with lambdas with the following signature:

[=](int) { ... }

and:

int, RAJA::xargs<int*, double>

can be used with lambdas with the following signature:

[=](int, int*, double) { ... }

Allocators

The last template argument to the workgroup constructs is an allocator type that conforms to the allocator named
requirement used in the standard library. This gives you control over how memory is allocated, for example with
umpire, and what memory space is used, both of which have poerformance implications. Find the requirements
for allocator types along with a simple example here https://en.cppreference.com/w/cpp/named_req/Allocator. The
default allocator used by the standard template library may be used with ordered and non-GPU policies:

using Allocator = std::allocator<char>;

Note:

• The allocator type must use template argument char.

• Allocators must provide memory that is accessible where it is used.

– Ordered work order policies only require memory that is accessible where loop bodies are enqueued.

– Unordered work order policies require memory that is accessible from both where the loop bodies are
enqueued and from where the loop is executed based on the work execution policy.

72 Chapter 6. RAJA Copyright and License Information

https://en.cppreference.com/w/cpp/named_req/Allocator

RAJA Documentation, Release 2022.03.1

* For example when using cuda work exeution policies with cuda unordered work order policies
pinned memory is a good choice because it is always accessible on the host and device.

WorkPool

The RAJA::WorkPool class template holds a set of simple (e.g., non-nested) loops that are enqueued one at a time.
Note that simple multi-dimensional loops can be adapted into simple loops via RAJA::CombiningAdapter, see
MultiDimensional loops using Simple loop APIs (RAJA::CombiningAdapter). For example, to enqueue a C-style loop
that adds two vectors, like:

for (int i = 0; i < N; ++i) {
c[i] = a[i] + b[i];

}

is as simple as calling enqueue on a RAJA::WorkPool object and passing the same arguments you would pass to
RAJA::forall.:

using WorkPool_type = RAJA::WorkPool< workgroup_policy,
int, RAJA::xargs<>,
Allocator >;

WorkPool_type workpool(Allocator{});

workpool.enqueue(RAJA::RangeSegment(0, N), [=] (int i) {
c[i] = a[i] + b[i];

});

Note that WorkPool may have to allocate and reallocate multiple times to store a set of loops depending on the work
storage policy. Reallocation can be avoided by reserving enough memory before adding any loops.:

workpool.reserve(num_loops, storage_bytes);

Here num_loops is the number of loops to allocate space for and num_storage_bytes is the amount of storage
to allocate. These may be used differently depending on the work storage policy. The number of loops enqueued in a
RAJA::WorkPool and the amount of storage used may be queried using:

size_t num_loops = workpool.num_loops();
size_t storage_bytes = workpool.storage_bytes();

Storage will automatically reserved when reusing a RAJA::WorkPool‘ object based on the maximum seen values for
num_loops and storage_bytes.

When you’ve added all the loops you want to the set, you can call instantiate on the RAJA::WorkPool to generate
a RAJA::WorkGroup.:

WorkGroup_type workgroup = workpool.instantiate();

WorkGroup

The RAJA::WorkGroup class template is responsible for hanging onto the set of loops and running the loops. The
RAJA::WorkGroup owns its loops and must not be destroyed before any loops run asynchronously using it have
completed. It is instantiated from a RAJA::WorkPool object which transfers ownership of a set of loops to the
RAJA::WorkGroup and prepares the loops to be run. For example:

6.1. RAJA User Guide 73

RAJA Documentation, Release 2022.03.1

using WorkGroup_type = RAJA::WorkGroup< workgroup_policy,
int, RAJA::xargs<>,
Allocator >;

WorkGroup_type workgroup = workpool.instantiate();

creates a RAJA::WorkGroup workgroup from the loops in workpool and leaves workpool empty and ready
for reuse. When you want to run the loops simply call run on workgroup and pass in the extra arguments:

WorkSite_type worksite = workgroup.run();

In this case no extra arguments were passed to run because the RAJA::WorkGroup specified no extra arguments
RAJA::xargs<>. Passing extra arguments when the loops are run lets you delay creation of those arguments until
you plan to run the loops. This lets the value of the arguments depend on the loops in the set. A simple example of
this may be found in the tutorial here RAJA Tutorial. Run produces a RAJA::WorkSite object.

WorkSite

The RAJA::WorkSite class template is responsible for extending the lifespan of objects used when running loops
asynchronously. This means that the RAJA::WorkSite object must remain alive until the call to run has been
synchronized. For example the scoping here:

{
using WorkSite_type = RAJA::WorkSite< workgroup_policy,

int, RAJA::xargs<>,
Allocator >;

WorkSite_type worksite = workgroup.run();

// do other things

synchronize();
}

ensures that worksite survives until after synchronize is called.

Vectorization (SIMD/SIMT)

Warning: This section describes an initial draft of an incomplete, experimental RAJA capability. It is not
considered ready for production. A basic description is provided here so that (potentially) interested users
can take a look, try it out, and provide input if they wish to do so.

The RAJA team is experimenting with an API for SIMD/SIMT programming. The goal is to make the implementation
perform as well as if one used vectorization intrinsics directly in their code, but without the software complexity
and maintenance burden associated with doing that. In particular, our goal is to guarantee that specified vectorization
occurs without needing to explicitly use intrinsics in user code or rely on compiler auto-vectorization implementations.

Note: All RAJA vectorization types are in the namespace RAJA::expt.

Currently, the main abstractions developed in RAJA so far are:

74 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

• Register wraps underlying SIMD/SIMT hardware registers and provides consistent uniform access to them,
using intrinsics under the API when possible. The RAJA register abstraction currently supports the following
hardware-specific ISAs : AVX, AVX2, AVX512, CUDA, and HIP.

• Vector builds on Register to provide arbitrary length vectors and operations on them.

• Matrix builds on Register to provide arbitrary-sized matrices, column-major and row-major layouts, and
operations on them.

Finally, these capabilities integrate with RAJA View and Layout capabilities, which implements am expression-
template system that allows a user to write linear algebra expressions on arbitrarily sized scalars, vectors, and matrices
and have the appropriate SIMD/SIMT instructions performed during expression evaluation.

Why Are We Doing This?

Quoting Tim Foley in Matt Pharr’s blog: “Auto-vectorization is not a programming model”. Unless, of course, you
consider “hope for the best” to be a sound plan.

Auto-vectorization is problematic for multiple reasons. First, vectorization is not explicit in the source code and
so compilers must divine correctness when attempting to apply vectorization optimizations. Since most compilers
are very conservative in this regard, many vectorization opportunities are typically missed when one relies solely on
compiler auto-vectorization. Second, every compiler will treat your code differently since compiler implementations
use different heuristics, even for different versions of the same compiler. So performance portability is not just an issue
with respect to hardware, but also across compilers. Third, it is impossible in general for most application developers
to clearly understand the decisions made by a compiler during its optimization process.

Using vectorization intrinsics in application source code is also problematic because different processors support
different instruction set architectures (ISAs) and so source code portability requires a mechanism that insulates it from
architecture-specific code.

GPU programming makes us be explicit about parallelization, and SIMD is really no different. RAJA enables single-
source portable code across a variety of programming model back-ends. The RAJA vectorization abstractions intro-
duced here are an attempt to bring a level of convergence between SIMD and GPU programming by providing uniform
access to hardware-specific acceleration.

Note: Auto-vectorization is not a programming model. –Tim Foley

Register

RAJA::expt::Register<T, REGISTER_POLICY> is a class template that takes a a data type parameter T and
a register policy REGISTER_POLICY that indicates the hardware register type. The RAJA::expt::Register
interface provides uniform access to register-level operations. It is intended as a building block for higher level abstrac-
tions. A RAJA::expt::Register type represents one SIMD register on a CPU architecture and 1 value/SIMT
lane on a GPU architecture.

Note: A user can use the RAJA::expt::Register type directly in their code. However, we do not recommend
this. Instead, we want users to employ higher level abstractions that RAJA provides.

RAJA::expt::Register supports four scalar element types, int32_t, int64_t, float, and double.
These are the only types that are portable across all SIMD/SIMT architectures. Bfloat, for example, is not portable,
so we don’t provide support for that type.

6.1. RAJA User Guide 75

https://pharr.org/matt/blog/2018/04/18/ispc-origins

RAJA Documentation, Release 2022.03.1

RAJA::expt::Register supports the following SIMD/SIMT hardware-specific ISAs: AVX, AVX2, and
AVX512 for SIMD CPU vectorization, and CUDA warp, HIP wavefront for GPUs. Scalar support is provided for
all hardware for portability and experimentation/analysis. Extensions to support other architectures may be forthcom-
ing and should be straightforward to implement.

Register Operations

RAJA::expt::Register provides various operations, including:

• Basic SIMD handling: get element, broadcast

• Memory operations: load (packed, strided, gather) and store (packed, strided, scatter)

• SIMD element-wise arithmetic: add, subtract, multiply, divide, vmin, vmax

• Reductions: dot-product, sum, min, max

• Special operations for matrix operations: permutations, segmented operations

Register DAXPY Example

The following is a code example that shows using the RAJA::expt::Register class to perform a DAXPY kernel
with AVX2 CPU SIMD instructions. Again, we do not recommend that you write code directly using the Register
class, but use the higher level VectorRegister abstraction. However, this example demonstrates how the higher level
abstractions are using the Register class:

// define array length
int len = ...;

// data used in kernel
double a = ...;
double const *X = ...;
double const *Y = ...;
double *Z = ...;

using reg_t = RAJA::expt::Register<double, RAJA::expt::avx2_register>;
int reg_width = reg_t::s_num_elem; // width of avx2 register is 4 doubles

// Compute daxpy in chunks of 4 values at one time
for (int i = 0;i < len; i += reg_width){
reg_t x, y;

// load 4 consecutive values of X, Y arrays into registers
x.load_packed(X+i);
y.load_packed(Y+i);

// perform daxpy on 4 values simultaneously (store in register)
reg_t z = a * x + y;

// store register result in Z array
z.store_packed(Z+i);

}

// loop postamble code
int remainder = len % reg_width;
if (remainder) {

(continues on next page)

76 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

reg_t x, y;

// 'i' is the starting array index of the remainder
int i = len - remainder;

// load remainder values of X, Y arrays into registers
x.load_packed_n(X+i, remainder);
y.load_packed_n(Y+i, remainder);

// perform daxpy on remainder values simultaneously (store in register)
reg_t z = a * x + y;

// store register result in Z array
z.store_packed_n(Z+i, remainder);

}

This code is guaranteed to vectorize since the RAJA::expt::Register operations insert the appropriate SIMD
intrinsic operations into the method calls. Note that RAJA::expt::Register provides overloads of basic arith-
metic operations so that the DAXPY operation itself (z = a * x + y) looks like vanilla scalar code.

Note that since we are using bare pointers to the data, load and store operations are performed by explicit method
calls in the code. Also, we must write (duplicate) postamble code to handle cases where the array length (len) is not
an integer multiple of the register width. The postamble code perform the DAXPY operation on the remainder of the
array that remains after the for-loop.

These extra lines of code should make it clear why we do not recommend using ‘‘RAJA::Register‘‘ directly in
application code.

Tensor Register

RAJA::expt::TensorRegister< > is a class template that provides a higher-level interface on top
of the RAJA::expt::Register class. RAJA::expt::TensorRegister< > wraps one or more
RAJA::expt::Register< > objects to create a tensor-like object.

Note: As with RAJA::expt::Register, we don’t recommend using RAJA::expt::TensorRegister
directly. Rather, we recommend using use-case specific types that RAJA provides and which are described below.

To make code cleaner and more readable, the specific types are intended to be used with ‘‘RAJA::View‘‘ and
‘‘RAJA::expt::TensorIndex‘‘ objects.

Vector Register

RAJA::expt::VectorRegister<T, REGISTER_POLICY, NUM_ELEM> provides an abstraction for a vec-
tor of arbitrary length. It is implemented using one or more RAJA::expt::Register objects. The vector length is
independent of the underlying register width. The template parameters are: T data type, REGISTER_POLICY vector
register policy, and NUM_ELEM number of data elements of type T that fit in a register. The last two of these have
defaults for all cases, so they do not usually need to be provided by a user.

Earlier, we said that we do not recommended using RAJA::expt::Register directly. The reason for this is that
it is good to decouple vector length from hardware register size since it allows one to write simpler, more readable
code that is easier to get correct. This should be clear from the code example below.

6.1. RAJA User Guide 77

RAJA Documentation, Release 2022.03.1

Vector Register DAXPY Example

The following code example shows the DAXPY computation shown above written using
RAJA::expt::VectorRegister, RAJA::expt::VectorIndex, and RAJA::View classes, which
obviate the need for the extra lines of code discussed earlier:

// define array length and data used in kernel (as before)
int len = ...;
double a = ...;
double const *X = ...;
double const *Y = ...;
double *Z = ...;

// define vector register and index types
using vec_t = RAJA::expt::VectorRegister<double, RAJA::expt::avx2_register>;
using idx_t = RAJA::expt::VectorIndex<int, vec_t>;

// wrap array pointers in RAJA View objects
auto vX = RAJA::make_view(X, len);
auto vY = RAJA::make_view(Y, len);
auto vZ = RAJA::make_view(Z, len);

// 'all' knows the length of vX, vY, and vZ from the View objects
// and it encodes the vector type
auto all = idx_t::all();

// compute the complete array daxpy in one line of code
// this produces a vectorized loop, and the loop postamble
vZ(all) = a * vX(all) + vY(all);

This code has several advantages over the previous example. It is guaranteed to vectorize and is much easier to read,
get correct, and maintain since the RAJA::View class handles the looping and postamble code automatically to
allow arrays of arbitrary size. The RAJA::View class provides overloads of the arithmetic operations based on the
‘all’ type and inserts the appropriate SIMD instructions and load/store operations to vectorize the operations as in the
earlier example. It may be considered by some to be inconvenient to have to use the RAJA::View class, but it is easy
to wrap bare pointers as can is shown in the example.

Expression Templates

The figure below shows the sequence of SIMD operations, in the form of an abstract syntax tree (AST), applied in the
DAXPY code by the RAJA constructs used in the code example. During compilation, a tree of expression template
objects is constructed based on the order of operations that appear in the kernel. Specifically, the operation sequence
is the following:

1. Load a chunk of values in ‘vX’ into a register.

2. Broadcast the scalar value ‘a’ to each slot in a vector register.

3. Load a chunk of values in ‘vY’ into a register.

4. Multiply values in the ‘a’ register and ‘vX’ register and multiply by the values in the ‘vY’ register in a single
vector FMA (Fused Multiply-Add) operation, storing the result in a register.

5. Write the result in the register to the ‘vZ’ array.

RAJA::View objects indexed by RAJA::TensorIndex objects (RAJA::VectorIndex in this case) return
LoadStore expression template objects. Each expression template object is evaluated on assignment and a register

78 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

chunk size of values is loaded into another register object. Finally, the left-hand side of the expression is evaluated by
storing the chunk of values in the right-hand side result register into the array on the left-hand side of the equal sign.

Fig. 5: An AST illustration of the SIMD operations in the DAXPY code.

CPU/GPU Portability

It is important to note that the code in the example in the previous section is not portable to run on a GPU because it
does not include a way to launch a GPU kernel. The following code example shows how to enable the code to run on
either a CPU or GPU via a run time choice:

// array lengths and data used in kernel same as above

// define vector register and index types
using vec_t = RAJA::expt::VectorRegister<double>;
using idx_t = RAJA::expt::VectorIndex<int, vec_t>;

// array pointers wrapped in RAJA View objects as before
// ...

using cpu_launch = RAJA::expt::seq_launch_t;
using gpu_launch = RAJA::expt::cuda_launch_t<false>; // false => launch

// CUDA kernel
// synchronously

using pol_t =
RAJA::expt::LoopPolicy< cpu_launch, gpu_launch >;

RAJA::expt::ExecPlace cpu_or_gpu = ...;

(continues on next page)

6.1. RAJA User Guide 79

RAJA Documentation, Release 2022.03.1

(continued from previous page)

RAJA::expt::launch<pol_t>(cpu_or_gpu, resources,

[=] RAJA_HOST_DEVICE (context ctx) {
auto all = idx_t::all();
vZ(all) = a * vX(all) + vY(all);

}
);

This version of the kernel can be run on a CPU or GPU depending on the run time chosen value of the variable
cpu_or_gpu. When compiled, the code will generate versions of the kernel for the CPU and GPU based on the
parameters in the pol_t loop policy. The CPU version will be the same as the version in the previous section. The
GPU version is essentially the same but will run in a GPU kernel. Note that there is only one template argument
passed to the register when vec_t is defined. RAJA::expt::VectorRegister<double> uses defaults for
the register policy, based on the system hardware, and number of data elements of type double that will fit in a register.

Matrix Registers

RAJA provides RAJA::expt::TensorRegister type aliases to support matrices of arbitrary size and shape.
These are:

• RAJA::expt::SquaretMatrixRegister<T, LAYOUT, REGISTER_POLICY>which abstracts op-
erations on an N x N square matrix.

• RAJA::expt::RectMatrixRegister<T, LAYOUT, ROWS, COLS, REGISTER_POLICY>
which abstracts operations on an N x M rectangular matrix.

Matrices are implemented using one or more RAJA::expt::Register objects. Data layout can be row-major or
column major. Matrices are intended to be used with RAJA::View and RAJA::expt::TensorIndex objects,
similar to what was shown above with RAJA::expt::VectorRegister example.

Matrix operations support matrix-matrix, matrix-vector, and vector-matrix multiplication, and transpose operations.
Rows or columns can be represented with one or more registers, or a power-of-two fraction of a single register. This
is important for CUDA GPU warp/wavefront registers, which are 32-wide for CUDA and 64-wide for HIP.

Here is a simple code example that performs the matrix-analogue of the vector DAXPY operation presented above
using square matrices:

// define matrix size and data used in kernel (similar to before)
int N = ...;
double a = ...;
double const *X = ...;
double const *Y = ...;
double *Z = ...;

// define matrix register and row/column index types
using mat_t = RAJA::expt::SquareMatrixRegister<double,

RAJA::expt::RowMajorLayout>;
using row_t = RAJA::expt::RowIndex<int, mat_t>;
using col_t = RAJA::expt::ColIndex<int, mat_t>;

// wrap array pointers in RAJA View objects (similar to before)
auto mX = RAJA::make_view(X, N, N);
auto mY = RAJA::make_view(Y, N, N);
auto mZ = RAJA::make_view(Z, N, N);

(continues on next page)

80 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

using cpu_launch = RAJA::expt::seq_launch_t;
using gpu_launch = RAJA::expt::cuda_launch_t<false>; // false => launch

// CUDA kernel
// synchronously

using pol_t =
RAJA::expt::LoopPolicy< cpu_launch, gpu_launch >;

RAJA::expt::ExecPlace cpu_or_gpu = ...;

RAJA::expt::launch<pol_t>(cpu_or_gpu, resources,

[=] RAJA_HOST_DEVICE (context ctx) {
auto rows = row_t::all();
auto cols = col_t::all();
mZ(rows, cols) = a * mX(rows, cols) + mY(rows, cols);

}
);

Conceptually, as well as implementation-wise, this is similar to the previous vector example except the operations
are in two dimensions. The kernel code is easy to read, it is guaranteed to vectorize, and iterating over the data is
handled by RAJA (register width sized chunk, plus postamble scalar operations). Again, the RAJA::View arithmetic
operation overloads insert the appropriate vector instructions in the code.

6.1.3 Application Considerations

Warning: Comming soon!! Stay tuned.

6.1.4 RAJA Tutorial

In addition to the tutorial portion of this RAJA User Guide, we maintain a repository of tutorial presentation materials
here RAJA Tutorials Repo.

This RAJA tutorial introduces RAJA concepts and capabilities via a sequence of examples of increasing complexity.
Complete working codes for the examples are located in the RAJA``examples directory. The RAJA tutorial evolves
as we add new features to RAJA, so refer to it periodically if you are interested in learning about them.

To understand the discussion and code examples, a working knowledge of C++ templates and lambda expressions is
required. So, before we begin, we provide a bit of background discussion of basic aspects of how RAJA use employs
C++ templates and lambda expressions, which is essential to using RAJA successfully.

To understand the GPU examples (e.g., CUDA), it is also important to know the difference between CPU (host) and
GPU (device) memory allocations and how transfers between those memory spaces work. For a detailed discussion,
see Device Memory.

RAJA does not provide a memory model. This is by design as developers of many of applications that use RAJA prefer
to manage memory themselves. Thus, users are responsible for ensuring that data is properly allocated and initialized
on a GPU device when running GPU code. This can be done using explicit host and device allocation and copying
between host and device memory spaces or via unified memory (UM), if available. RAJA developers also support a
library called CHAI which complements RAJA by providing a alternative to manual host-device memory copy calls
or UM. For more information, see Plugins.

6.1. RAJA User Guide 81

https://github.com/LLNL/RAJA-tutorials
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory
https://github.com/LLNL/CHAI

RAJA Documentation, Release 2022.03.1

A Little C++ Background

RAJA makes heavy use of C++ templates and using RAJA most easily and effectively is done by representing the
bodies of loop kernels as C++ lambda expressions. Alternatively, C++ functors can be used, but they make appli-
cation source code more complex, potentially placing a significant negative burden on source code readability and
maintainability.

C++ Templates

C++ templates enable one to write generic code and have the compiler generate a specific implementation for each set
of template parameter types you use. For example, the RAJA::forall method to execute loop kernels is a template
method defined as:

template <typename ExecPol,
typename IdxType,
typename LoopBody>

forall(IdxType&& idx, LoopBody&& body) {
...

}

Here, “ExecPol”, “IdxType”, and “LoopBody” are C++ types a user specifies in their code; for example:

RAJA::forall< RAJA::seq_exec >(RAJA::RangeSegment(0, N), [=](int i) {
a[i] = b[i] + c[i];

});

The “IdxType” and “LoopBody” types are deduced by the compiler based on what arguments are passed to the
RAJA::forall method. Here, the loop body type is defined by the lambda expression:

[=](int i) { a[i] = b[i] + c[i]; }

Elements of C++ Lambda Expressions

Here, we provide a brief description of the basic elements of C++ lambda expressions. A more technical and detailed
discussion is available here: Lambda Functions in C++11 - the Definitive Guide

Lambda expressions were introduced in C++ 11 to provide a lexical-scoped name binding; specifically, a closure that
stores a function with a data environment. That is, a lambda expression can capture variables from an enclosing scope
for use within the local scope of the function expression.

A C++ lambda expression has the following form:

[capture list] (parameter list) {function body}

The capture list specifies how variables outside the lambda scope are pulled into the lambda data environment.
The parameter list defines arguments passed to the lambda function body – for the most part, lambda argu-
ments are just like arguments in a regular C++ method. Variables in the capture list are initialized when the lambda
expression is created, while those in the parameter list are set when the lambda expression is called. The body of a
lambda expression is similar to the body of an ordinary C++ method. RAJA templates, such as RAJA::forall and
RAJA::kernel pass arguments to lambdas based on usage and context; e.g., loop iteration indices.

A C++ lambda expression can capture variables in the capture list by value or by reference. This is similar to how
arguments to C++ methods are passed; i.e., pass-by-reference or pass-by-value. However, there are some subtle
differences between lambda variable capture rules and those for ordinary methods. Variables mentioned in the capture

82 Chapter 6. RAJA Copyright and License Information

https://www.cprogramming.com/c++11/c++11-lambda-closures.html

RAJA Documentation, Release 2022.03.1

list with no extra symbols are captured by value. Capture-by-reference is accomplished by using the reference symbol
‘&’ before the variable name; for example:

int x;
int y = 100;
[&x, &y](){ x = y; };

generates a lambda expression that captures both ‘x’ and ‘y’ by reference and assigns the value of ‘y’ to ‘x’ when
called. The same outcome would be achieved by writing:

[&](){ x = y; }; // capture all lambda arguments by reference...

or:

[=, &x](){ x = y; }; // capture 'x' by reference and 'y' by value...

Note that the following two attempts will generate compilation errors:

[=](){ x = y; }; // error: all lambda arguments captured by value,
// so cannot assign to 'x'.

[x, &y](){ x = y; }; // error: cannot assign to 'x' since it is captured
// by value.

Specifically, a variable hat is captured by value is read-only.

A Few Notes About Lambda Usage With RAJA

There are several issues to note about C++ lambda expressions; in particular, with respect to RAJA usage. We describe
them here.

• Prefer by-value lambda capture.

We recommended capture by-value for all lambda loop bodies passed to RAJA execution methods. To execute
a RAJA loop on a non-CPU device, such as a GPU, all variables accessed in the loop body must be passed into
the GPU device data environment. Using capture by-value for all RAJA-based lambda usage will allow your
code to be portable for either CPU or GPU execution. In addition, the read-only nature of variables captured
by-value can help avoid incorrect CPU code since the compiler will report incorrect usage.

• Must use ‘device’ annotation for CUDA device execution.

Any lambda passed to a CUDA execution context (or function called from a CUDA device kernel, for that
matter) must be decorated with the __device__ annotation; for example:

RAJA::forall<RAJA::cuda_exec<BLOCK_SIZE>>(range, [=] __device__ (int i) { ... }
→˓);

Without this, the code will not compile and generate compiler errors indicating that a ‘host’ lambda cannot be
called from ‘device’ code.

RAJA provides the macro RAJA_DEVICE that can be used to help switch between host-only or device-only
CUDA compilation.

• Use ‘host-device’ annotation on a lambda carefully.

RAJA provides the macro RAJA_HOST_DEVICE to support the dual CUDA annotation __ host__
__device__. This makes a lambda or function callable from CPU or CUDA device code. However, when
CPU performance is important, the host-device annotation should be applied carefully on a lambda that
is used in a host (i.e., CPU) execution context. Unfortunately, a loop kernel containing a lambda annotated

6.1. RAJA User Guide 83

RAJA Documentation, Release 2022.03.1

in this way may run noticeably slower on a CPU than the same lambda with no annotation depending on the
version of the nvcc compiler you are using.

• Cannot use ‘break’ and ‘continue’ statements in a lambda.

In this regard, a lambda expression is similar to a function. So, if you have loops in your code with these
statements, they should be rewritten.

• Global variables are not captured in a lambda.

This fact is due to the C++ standard. If you need (read-only) access to a global variable inside a lambda
expression, one solution is to make a local reference to it; for example:

double& ref_to_global_val = global_val;

RAJA::forall<RAJA::cuda_exec<BLOCK_SIZE>>(range, [=] __device__ (int i) {
// use ref_to_global_val

});

• Local stack arrays may not be captured by CUDA device lambdas.

Although this is inconsistent with the C++ standard (local stack arrays are properly captured in lambdas for code
that will execute on a CPU), attempting to access elements in a local stack array in a CUDA device lambda may
generate a compilation error depending on the version of the nvcc compiler you are using. One solution to this
problem is to wrap the array in a struct; for example:

struct array_wrapper {
int[4] array;

} bounds;

bounds.array = { 0, 1, 8, 9 };

RAJA::forall<RAJA::cuda_exec<BLOCK_SIZE>>(range, [=] __device__ (int i) {
// access entries of bounds.array

});

This issue appears to be resolved in in the 10.1 release of CUDA. If you are using an earlier version of nvcc, an
implementation similar to the one above will be required.

RAJA Examples

The remainder of this tutorial illustrates how to use RAJA features with working code examples that are located in the
RAJA/examples directory. Additional information about the RAJA features used can be found in RAJA Features.

The examples demonstrate CPU execution (sequential, SIMD, OpenMP multithreading) and CUDA GPU execution.
Examples that show how to use RAJA with other parallel programming model back-ends that are in development will
appear in future RAJA releases. For adventurous users who wish to try experimental features, usage is similar to what
is shown in the examples here.

All RAJA programming model support features are enabled via CMake options, which are described in Build Config-
uration Options.

For the purposes of discussion of each example, we assume that any and all data used has been properly allocated and
initialized. This is done in the example code files, but is not discussed further here.

84 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Simple Loops and Basic RAJA Features

The examples in this section illustrate how to use RAJA::forall methods to execute simple loop kernels; i.e.,
non-nested loops. It also describes iteration spaces, reductions, atomic operations, scans, and sorts.

Vector Addition (Basic Loop Execution)

Key RAJA features shown in this example:

• RAJA::forall loop execution template

• RAJA::RangeSegment iteration space construct

• RAJA execution policies

In the example, we add two vectors ‘a’ and ‘b’ of length N and store the result in vector ‘c’. A simple C-style loop
that does this is:

for (int i = 0; i < N; ++i) {
c[i] = a[i] + b[i];

}

RAJA Variants

The RAJA variants of the vector addition operation illustrate how the same kernel can be run with a variety of different
programming model back-ends by simply swapping out the execution policy. This can be done by defining type aliases
in a header file so that execution policy types can be easily switched, and the code can be compiled to run differently,
without changing the loop kernel code. In the example code, we make all execution policy types explicit for clarity.

For the RAJA variants, we replace the C-style for-loop with a call to the RAJA::forall loop execution template
method. The method takes an iteration space and the vector addition loop body as a C++ lambda expression. We pass
a RAJA::RangeSegment object, which describes a contiguous sequence of integral values [0, N) for the iteration
space (for more information about RAJA loop indexing concepts, see Indices, Segments, and IndexSets). The loop
execution template method requires an execution policy template type that specifies how the loop is to run (for more
information about RAJA execution policies, see Policies).

For the RAJA sequential variant, we use the RAJA::seq_exec execution policy type:

RAJA::forall<RAJA::seq_exec>(RAJA::RangeSegment(0, N), [=] (int i) {
c[i] = a[i] + b[i];

});

The RAJA sequential execution policy enforces strictly sequential execution; in particular, no SIMD vectorization
instructions or other substantial optimizations will be generated by the compiler. To attempt to force the compiler to
generate SIMD vector instructions, we would use the RAJA SIMD execution policy:

RAJA::simd_exec

Alternatively, RAJA provides a loop execution policy:

RAJA::loop_exec

This policy allows the compiler to generate optimizations, such as SIMD if compiler heuristics suggest that it is safe
to do so and potentially beneficial for performance, but the optimizations are not forced.

To run the kernel with OpenMP multithreaded parallelism on a CPU, we use the
RAJA::omp_parallel_for_exec execution policy:

6.1. RAJA User Guide 85

RAJA Documentation, Release 2022.03.1

RAJA::forall<RAJA::omp_parallel_for_exec>(RAJA::RangeSegment(0, N), [=] (int i) {
c[i] = a[i] + b[i];

});

This will distribute the loop iterations across CPU threads and run the loop over threads in parallel.

To run the kernel on a CUDA GPU device, we use the RAJA::cuda_exec policy:

RAJA::forall<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(RAJA::RangeSegment(0, N),
[=] RAJA_DEVICE (int i) {
c[i] = a[i] + b[i];

});

Note that the CUDA execution policy type accepts a template argument CUDA_BLOCK_SIZE, which specifies that
each CUDA thread block launched to execute the kernel will have the given number threads in the block.

For performance tuning, the RAJA::cuda_exec_explicit policy is also provided. This allows the user to
specify the number of blocks allocated per streaming multiprocessor (SM) to allow additional block level parallelism.
Note that the third boolean argument representing asynchronous execution can be omitted, and is false by default:

RAJA::forall<RAJA::cuda_exec_explicit<CUDA_BLOCK_SIZE, 2, Asynchronous>>
→˓(RAJA::RangeSegment(0, N),

[=] RAJA_DEVICE (int i) {
c[i] = a[i] + b[i];

});

Since the lambda defining the loop body will be passed to a device kernel, it must be decorated with the __device__
attribute when it is defined. This can be done directly or by using the RAJA_DEVICE macro.

Similarly, to run the kernel on a GPU using the RAJA HIP back-end, we use the RAJA::hip_exec policy:

RAJA::forall<RAJA::hip_exec<HIP_BLOCK_SIZE>>(RAJA::RangeSegment(0, N),
[=] RAJA_DEVICE (int i) {
d_c[i] = d_a[i] + d_b[i];

});

The file RAJA/examples/tut_add-vectors.cpp contains the complete working example code.

Vector Dot Product (Sum Reduction)

Key RAJA features shown in this example:

• RAJA::forall loop execution template

• RAJA::RangeSegment iteration space construct

• RAJA execution policies

• RAJA::ReduceSum sum reduction template

• RAJA reduction policies

In the example, we compute a vector dot product, ‘dot = (a,b)’, where ‘a’ and ‘b’ are two vectors length N and ‘dot’ is
a scalar. Typical C-style code to compute the dot product and print its value afterward is:

double dot = 0.0;

for (int i = 0; i < N; ++i) {

(continues on next page)

86 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

dot += a[i] * b[i];
}

Note that this operation performs a reduction, a computational pattern that produces a single result from a set of values.
Reductions present a variety of issues that must be addressed to operate properly in parallel.

RAJA Variants

Different programming models support parallel reduction operations differently. Some models, such as CUDA, do not
provide support for reductions at all and so such operations must be explicitly coded by users. It can be challenging to
generate a correct and high performance implementation. RAJA provides portable reduction types that make it easy to
perform reduction operations in loop kernels. The RAJA variants of the dot product computation show how to use the
RAJA::ReduceSum sum reduction template type. RAJA provides other reduction types and also allows multiple
reduction operations to be performed in a single kernel along with other computation. Please see Reductions for an
example that does this.

Each RAJA reduction type takes a reduce policy template argument, which must be compatible with the execution
policy applied to the kernel in which the reduction is used. Here is the RAJA sequential variant of the dot product
computation:

The sum reduction object is defined by specifying the reduction policy RAJA::seq_reduce, which matches the
loop execution policy, and a reduction value type (i.e., ‘double’). An initial value of zero for the sum is passed to the
reduction object constructor. After the kernel executes, we use the ‘get’ method to retrieve the reduced value.

The OpenMP multithreaded variant of the loop is implemented similarly:

RAJA::ReduceSum<RAJA::omp_reduce, double> ompdot(0.0);

RAJA::forall<RAJA::omp_parallel_for_exec>(RAJA::RangeSegment(0, N), [=] (int i) {
ompdot += a[i] * b[i];

});

dot = ompdot.get();

Here, we use the RAJA::omp_reduce reduce policy to match the OpenMP loop execution policy.

The RAJA CUDA variant is achieved by using appropriate loop execution and reduction policies:

RAJA::ReduceSum<RAJA::cuda_reduce, double> cudot(0.0);

RAJA::forall<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(RAJA::RangeSegment(0, N),
[=] RAJA_DEVICE (int i) {
cudot += a[i] * b[i];

});

dot = cudot.get();

Here, the CUDA reduce policy RAJA::cuda_reduce matches the CUDA loop execution policy. Note that the
CUDA thread block size is not specified in the reduce policy as it will use the same value as the loop execution policy.

Similarly, for the RAJA HIP variant:

RAJA::ReduceSum<RAJA::hip_reduce, double> hpdot(0.0);

RAJA::forall<RAJA::hip_exec<HIP_BLOCK_SIZE>>(RAJA::RangeSegment(0, N),
[=] RAJA_DEVICE (int i) {

(continues on next page)

6.1. RAJA User Guide 87

RAJA Documentation, Release 2022.03.1

(continued from previous page)

hpdot += d_a[i] * d_b[i];
});

dot = hpdot.get();

It is worth noting how similar the code looks for each of these variants. The loop body is identical for each and only
the loop execution policy and reduce policy types change.

The file RAJA/examples/tut_dot-product.cpp contains the complete working example code.

Iteration Spaces: IndexSets and Segments

Key RAJA features shown in this example:

• RAJA::forall loop execution template

• RAJA::RangeSegment (i.e., RAJA::TypedRangeSegment) iteration space construct

• RAJA::TypedListSegment iteration space construct

• RAJA::IndexSet iteration construct and associated execution policies

The example uses a simple daxpy kernel and its usage of RAJA is similar to previous simple loop examples. The
example focuses on how to use RAJA index sets and iteration space segments, such as index ranges and lists of
indices. These features are important for applications and algorithms that use indirection arrays for irregular array
accesses. Combining different segment types, such as ranges and lists in an index set allows a user to launch different
iteration patterns in a single loop execution construct (i.e., one kernel). This is something that is not supported by
other programming models and abstractions and is unique to RAJA. Applying these concepts judiciously can increase
performance by allowing compilers to optimize for specific segment types (e.g., SIMD for range segments) while
providing the flexibility of indirection arrays for general indexing patterns.

Note: For the following examples, it is useful to remember that all RAJA segment types are templates, where
the type of the index value is the template argument. So for example, the basic RAJA range segment type is
RAJA::TypedRangeSegment<T>. The type RAJA::RangeSegment used here (for convenience) is a type
alias for RAJA::TypedRangeSegment<RAJA::Index_type>, where the template parameter is a default in-
dex type that RAJA defines.

For a summary discussion of RAJA segment and index set concepts, please see Indices, Segments, and IndexSets.

RAJA Segments

In previous examples, we have seen how to define a contiguous range of loop indices [0, N) with a
RAJA::RangeSegment object and use it in a RAJA loop execution template to run a loop kernel over the range.
For example:

RAJA::forall<RAJA::seq_exec>(RAJA::RangeSegment(0, N), [=] (IdxType i) {
a[i] += b[i] * c;

});

We can accomplish the same result by enumerating the indices in a RAJA::TypedListSegment object. Here, we
assemble the indices in a standard vector, create a list segment from that, and then pass the list segment to the forall
execution template:

88 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

std::vector<IdxType> idx;
for (IdxType i = 0; i < N; ++i) {
idx.push_back(i);

}

ListSegType idx_list(&idx[0], idx.size(), host_res);

RAJA::forall<RAJA::seq_exec>(idx_list, [=] (IdxType i) {
a[i] += b[i] * c;

});

Note that we are using the following type aliases:

using IdxType = RAJA::Index_type;
using ListSegType = RAJA::TypedListSegment<IdxType>;

Recall from discussion in Indices, Segments, and IndexSets that RAJA::Index_type is a default index type that
RAJA defines and which is used in some RAJA constructs as a convenience for users who want a simple mechanism
to apply index types consistently.

It is important to understand what happens when using list segments. During loop execution, indices stored in the list
segment are passed to the loop body one-by-one, effectively mimicking an indirection array except that the indirection
does not appear in the loop body. For example, we can reverse the order of the indices, run the loop with a new list
segment object, and get the same result since the loop is data-parallel:

std::reverse(idx.begin(), idx.end());

ListSegType idx_reverse_list(&idx[0], idx.size(), host_res);

RAJA::forall<RAJA::seq_exec>(idx_reverse_list, [=] (IdxType i) {
a[i] += b[i] * c;

});

Alternatively, we can also use a RAJA strided range segment to run the loop in reverse by giving it a stride of -1. For
example:

RAJA::forall<RAJA::seq_exec>(RAJA::RangeStrideSegment(N-1, -1, -1),
[=] (IdxType i) {
a[i] += b[i] * c;

});

The fact that RAJA always passes loop index values to lambdas in a kernel explains why we can run a kernel with
multiple segment types in a single RAJA construct as we discuss next.

RAJA IndexSets

The RAJA::TypedIndexSet template is a container that can hold any number of segments, of the same or different
types. An index set object can be passed to a RAJA loop execution method, just like a segment, to run a loop kernel.
When the loop is run, the execution method iterates over the segments and the loop indices in each segment. Thus,
the loop iterates can be grouped into different segments to partition the iteration space and iterate over the loop kernel
chunks (defined by segments), in serial, in parallel, or in some specific dependency ordering. Individual segments can
be executed in serial or parallel.

When an index set is defined, the segment types it may hold must be specified as template arguments. For example,
here we create an index set that can hold list segments. Then, we add the list segment we created earlier to it and run
the loop:

6.1. RAJA User Guide 89

RAJA Documentation, Release 2022.03.1

RAJA::TypedIndexSet<ListSegType> is1;

is1.push_back(idx_list); // use list segment created earlier.

RAJA::forall<SEQ_ISET_EXECPOL>(is1, [=] (IdxType i) {
a[i] += b[i] * c;

});

You are probably wondering: What is the ‘SEQ_ISET_EXECPOL’ type used for the execution policy?

Well, it is similar to execution policy types we have seen up to this point, except that it specifies a two-level policy
– one for iterating over the segments and one for executing the iterates defined by each segment. In the example, we
specify that we should do each of these operations sequentially by defining the policy as follows:

using SEQ_ISET_EXECPOL = RAJA::ExecPolicy<RAJA::seq_segit,
RAJA::seq_exec>;

Next, we perform the daxpy operation by partitioning the iteration space into two range segments:

RAJA::TypedIndexSet<RAJA::RangeSegment> is2;
is2.push_back(RAJA::RangeSegment(0, N/2));
is2.push_back(RAJA::RangeSegment(N/2, N));

RAJA::forall<SEQ_ISET_EXECPOL>(is2, [=] (IdxType i) {
a[i] += b[i] * c;

});

The first range segment is used to run the index range [0, N/2) and the second is used to run the range [N/2, N).

We can also break up the iteration space into three segments, 2 ranges and 1 list:

//
// Collect indices in a vector to create list segment
//

std::vector<IdxType> idx1;
for (IdxType i = N/3; i < 2*N/3; ++i) {
idx1.push_back(i);

}

ListSegType idx1_list(&idx1[0], idx1.size(), host_res);

RAJA::TypedIndexSet<RAJA::RangeSegment, ListSegType> is3;
is3.push_back(RAJA::RangeSegment(0, N/3));
is3.push_back(idx1_list);
is3.push_back(RAJA::RangeSegment(2*N/3, N));

RAJA::forall<SEQ_ISET_EXECPOL>(is3, [=] (IdxType i) {
a[i] += b[i] * c;

});

The first range segment runs the index range [0, N/3), the list segment enumerates the indices in the interval [N/3,
2*N/3), and the second range segment runs the range [2*N/3, N). Note that we use the same execution policy as
before.

Before we end the discussion of these examples, we demonstrate a few more index set execution policy variations. To
run the previous three segment code by iterating over the segments sequentially and executing each segment in parallel
using OpenMP multithreading, we would use this policy definition:

90 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

using OMP_ISET_EXECPOL1 = RAJA::ExecPolicy<RAJA::seq_segit,
RAJA::omp_parallel_for_exec>;

If we wanted to iterate over the segments in parallel using OpenMP multi-threading and execute each segment sequen-
tially, we would use the following policy:

using OMP_ISET_EXECPOL2 = RAJA::ExecPolicy<RAJA::omp_parallel_for_segit,
RAJA::seq_exec>;

Finally, to iterate over the segments sequentially and execute each segment in parallel on a GPU using either CUDA
or HIP kernel, we would use a policy, such as:

using CUDA_ISET_EXECPOL = RAJA::ExecPolicy<RAJA::seq_segit,
RAJA::cuda_exec<CUDA_BLOCK_SIZE>>;

or:

using HIP_ISET_EXECPOL = RAJA::ExecPolicy<RAJA::seq_segit,
RAJA::hip_exec<HIP_BLOCK_SIZE>>;

The file RAJA/examples/tut_indexset-segments.cpp contains working code for these examples.

Mesh Vertex Sum Example: Iteration Space Coloring

Key RAJA features shown in this example:

• RAJA::forall loop execution template method

• RAJA::ListSegment iteration space construct

• RAJA::IndexSet iteration space segment container and associated execution policies

The example computes a sum at each vertex on a logically-Cartesian 2D mesh as shown in the figure.

Fig. 6: A portion of the area of each mesh element is summed to the vertices surrounding the element.

Each sum is an average of the area of the mesh elements that share the vertex. In many “staggered mesh” applications,
such an operation is common and is often written in a way that presents the algorithm clearly but prevents paralleliza-
tion due to potential data races. That is, multiple loop iterates over mesh elements may attempt to write to the same
shared vertex memory location at the same time. The example shows how RAJA constructs can be used to enable

6.1. RAJA User Guide 91

RAJA Documentation, Release 2022.03.1

one to express such an algorithm in parallel and have it run correctly without fundamentally changing how it looks in
source code.

After defining the number of elements in the mesh, necessary array offsets and an array that indicates the mapping
between an element and its four surrounding vertices, a C-style version of the vertex sum calculation is:

for (int j = 0 ; j < N_elem ; ++j) {
for (int i = 0 ; i < N_elem ; ++i) {

int ie = i + j*jeoff ;
int* iv = &(elem2vert_map[4*ie]);
vertexvol_ref[iv[0]] += elemvol[ie] / 4.0 ;
vertexvol_ref[iv[1]] += elemvol[ie] / 4.0 ;
vertexvol_ref[iv[2]] += elemvol[ie] / 4.0 ;
vertexvol_ref[iv[3]] += elemvol[ie] / 4.0 ;

}
}

RAJA Sequential Variant

A nested loop RAJA variant of this kernel is:

using EXEC_POL1 =
RAJA::KernelPolicy<

RAJA::statement::For<1, RAJA::seq_exec, // j
RAJA::statement::For<0, RAJA::seq_exec, // i
RAJA::statement::Lambda<0>

>
>

>;

RAJA::kernel<EXEC_POL1>(RAJA::make_tuple(RAJA::RangeSegment(0, N_elem),
RAJA::RangeSegment(0, N_elem)),

[=](int i, int j) {
int ie = i + j*jeoff ;
int* iv = &(elem2vert_map[4*ie]);
vertexvol[iv[0]] += elemvol[ie] / 4.0 ;
vertexvol[iv[1]] += elemvol[ie] / 4.0 ;
vertexvol[iv[2]] += elemvol[ie] / 4.0 ;
vertexvol[iv[3]] += elemvol[ie] / 4.0 ;

});

Note that this version cannot be guaranteed to run correctly in parallel by simply changing the loop execution policies
as we have done in other examples. We would like to use RAJA to enable parallel execution and without changing
the way the kernel looks in source code. By applying a RAJA index set and suitably-defined list segments, we can
accomplish this.

RAJA Parallel Variants

To enable the kernel to run safely in parallel, by eliminating the race conditions, we partition the element iteration
space into four subsets (or colors) indicated by the numbers in the figure below, which represents a portion of our
logically-Cartesian 2D mesh.

92 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

2 3 2 3
0 1 0 1
2 3 2 3
0 1 0 1

Note that none of the elements with the same number share a common vertex. Thus, we can iterate over all elements
with the same number (i.e., color) in parallel.

First, we define four vectors to gather the mesh element indices for each color:

std::vector<int> idx0;
std::vector<int> idx1;
std::vector<int> idx2;
std::vector<int> idx3;

for (int j = 0 ; j < N_elem ; ++j) {
for (int i = 0 ; i < N_elem ; ++i) {

int ie = i + j*jeoff ;
if (i % 2 == 0) {

if (j % 2 == 0) {
idx0.push_back(ie);

} else {
idx2.push_back(ie);

}
} else {

if (j % 2 == 0) {
idx1.push_back(ie);

} else {
idx3.push_back(ie);

}
}

}
}

Then, we create a RAJA index set with four list segments, one for each color, using the vectors:

using SegmentType = RAJA::TypedListSegment<int>;

RAJA::TypedIndexSet<SegmentType> colorset;

camp::resources::Resource host_res{camp::resources::Host()};

colorset.push_back(SegmentType(&idx0[0], idx0.size(), host_res));
colorset.push_back(SegmentType(&idx1[0], idx1.size(), host_res));
colorset.push_back(SegmentType(&idx2[0], idx2.size(), host_res));
colorset.push_back(SegmentType(&idx3[0], idx3.size(), host_res));

Now, we can use an index set execution policy that iterates over the segments sequentially and executes each segment
in parallel using OpenMP multithreading (and RAJA::forall):

using EXEC_POL2 = RAJA::ExecPolicy<RAJA::seq_segit,
RAJA::seq_exec>;

RAJA::forall<EXEC_POL2>(colorset, [=](int ie) {
int* iv = &(elem2vert_map[4*ie]);
vertexvol[iv[0]] += elemvol[ie] / 4.0 ;
vertexvol[iv[1]] += elemvol[ie] / 4.0 ;

(continues on next page)

6.1. RAJA User Guide 93

RAJA Documentation, Release 2022.03.1

(continued from previous page)

vertexvol[iv[2]] += elemvol[ie] / 4.0 ;
vertexvol[iv[3]] += elemvol[ie] / 4.0 ;

});

Note that we no longer need to use the offset variable to compute the element index in terms of ‘i’ and ‘j’ since the
loop is no longer nested and the element indices are directly encoded in the list segments.

For completeness, here is the RAJA variant where we iterate over the segments sequentially, and execute each segment
in parallel via a CUDA kernel launch on a GPU:

using EXEC_POL4 = RAJA::ExecPolicy<RAJA::seq_segit,
RAJA::cuda_exec<CUDA_BLOCK_SIZE>>;

RAJA::forall<EXEC_POL4>(colorset_cuda, [=] RAJA_DEVICE (int ie) {
int* iv = &(elem2vert_map[4*ie]);
vertexvol[iv[0]] += elemvol[ie] / 4.0 ;
vertexvol[iv[1]] += elemvol[ie] / 4.0 ;
vertexvol[iv[2]] += elemvol[ie] / 4.0 ;
vertexvol[iv[3]] += elemvol[ie] / 4.0 ;

});

Here, we have marked the lambda loop body with the ‘RAJA_DEVICE’ macro and specified the number of threads in
a CUDA thread block in the segment execution policy.

The RAJA HIP variant is similar.

The file RAJA/examples/tut_vertexsum-coloring.cpp contains a complete working example code, in-
cluding a RAJA HIP variant.

Reductions

Key RAJA features shown in this example:

• RAJA::forall loop execution template

• RAJA::RangeSegment iteration space construct

• RAJA reduction types

• RAJA reduction policies

In the Vector Dot Product (Sum Reduction) example, we showed how to use the RAJA sum reduction type. The
following example uses all supported RAJA reduction types: min, max, sum, min-loc, max-loc.

Note: Multiple RAJA reductions can be combined in any RAJA loop kernel execution method, and reduction opera-
tions can be combined with any other kernel operations.

We start by allocating an array (the memory manager in the example uses CUDA Unified Memory if CUDA is enabled)
and initializing its values in a manner that makes the example mildly interesting and able to show what the different
reduction types do. Specifically, the array is initialized to a sequence of alternating values (‘1’ and ‘-1’). Then, two
values near the middle of the array are set to ‘-100’ and ‘100’:

//
// Define array length
//

const int N = 1000000;

(continues on next page)

94 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

//
// Allocate array data and initialize data to alternating sequence of 1, -1.
//

int* a = memoryManager::allocate<int>(N);

for (int i = 0; i < N; ++i) {
if (i % 2 == 0) {

a[i] = 1;
} else {
a[i] = -1;

}
}

//
// Set min and max loc values
//

const int minloc_ref = N / 2;
a[minloc_ref] = -100;

const int maxloc_ref = N / 2 + 1;
a[maxloc_ref] = 100;

We also define a range segment to iterate over the array:

With these parameters and data initialization, all the code examples presented below will generate the following results:

• the sum will be zero

• the min will be -100

• the max will be 100

• the min loc will be N/2

• the max loc will be N/2 + 1

A sequential kernel that exercises all RAJA sequential reduction types is:

using EXEC_POL1 = RAJA::seq_exec;
using REDUCE_POL1 = RAJA::seq_reduce;

RAJA::ReduceSum<REDUCE_POL1, int> seq_sum(0);
RAJA::ReduceMin<REDUCE_POL1, int> seq_min(std::numeric_limits<int>::max());
RAJA::ReduceMax<REDUCE_POL1, int> seq_max(std::numeric_limits<int>::min());
RAJA::ReduceMinLoc<REDUCE_POL1, int> seq_minloc(std::numeric_limits<int>::max(), -

→˓1);
RAJA::ReduceMaxLoc<REDUCE_POL1, int> seq_maxloc(std::numeric_limits<int>::min(), -

→˓1);

RAJA::forall<EXEC_POL1>(arange, [=](int i) {

seq_sum += a[i];

seq_min.min(a[i]);
seq_max.max(a[i]);

seq_minloc.minloc(a[i], i);
seq_maxloc.maxloc(a[i], i);

(continues on next page)

6.1. RAJA User Guide 95

RAJA Documentation, Release 2022.03.1

(continued from previous page)

});

std::cout << "\tsum = " << seq_sum.get() << std::endl;
std::cout << "\tmin = " << seq_min.get() << std::endl;
std::cout << "\tmax = " << seq_max.get() << std::endl;
std::cout << "\tmin, loc = " << seq_minloc.get() << " , "

<< seq_minloc.getLoc() << std::endl;
std::cout << "\tmax, loc = " << seq_maxloc.get() << " , "

<< seq_maxloc.getLoc() << std::endl;

Note that each reduction object takes an initial value at construction. Also, within the kernel, updating each reduction
is done via an operator or method that is basically what you would expect (i.e., ‘+=’ for sum, ‘min()’ for min, etc.).
After the kernel executes, the reduced value computed by each reduction object is retrieved after the kernel by calling
a ‘get()’ method on the reduction object. The min-loc/max-loc index values are obtained using ‘getLoc()’ methods.

For parallel multithreading execution via OpenMP, the example can be run by replacing the execution and reduction
policies with:

using EXEC_POL2 = RAJA::omp_parallel_for_exec;
using REDUCE_POL2 = RAJA::omp_reduce;

Similarly, the kernel containing the reductions can be run in parallel on a GPU using CUDA policies:

using EXEC_POL3 = RAJA::cuda_exec<CUDA_BLOCK_SIZE>;
using REDUCE_POL3 = RAJA::cuda_reduce;

or HIP policies:

using EXEC_POL3 = RAJA::hip_exec<HIP_BLOCK_SIZE>;
using REDUCE_POL3 = RAJA::hip_reduce;

Note: Each RAJA reduction type requires a reduction policy that must be compatible with the execution policy for
the kernel in which it is used.

The file RAJA/examples/tut_reductions.cpp contains the complete working example code.

Computing a Histogram with Atomic Operations

Key RAJA features shown in this example:

• RAJA::forall loop execution template

• RAJA::RangeSegment iteration space construct

• RAJA atomic add operation

The example uses an integer array of length ‘N’ randomly initialized with values in the interval [0, M). While iter-
ating over the array, the kernel accumulates the number of occurrences of each value in the array using atomic add
operations. Atomic operations allow one to update a memory location referenced by a specific address in parallel
without data races. The example shows how to use RAJA portable atomic operations and that they are used similarly
for different programming model back-ends.

96 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Note: Each RAJA reduction operation requires an atomic policy type parameter that must be compatible with the
execution policy for the kernel in which it is used.

For a complete description of supported RAJA atomic operations and atomic policies, please see Atomics.

All code snippets described below use the loop range:

RAJA::TypedRangeSegment<int> array_range(0, N);

and the integer array ‘bins’ of length ‘M’ to accumulate the number of occurrences of each value in the array.

Here is the OpenMP version:

RAJA::forall<RAJA::omp_parallel_for_exec>(array_range, [=](int i) {

RAJA::atomicAdd<RAJA::omp_atomic>(&bins[array[i]], 1);

});

Each slot in the ‘bins’ array is incremented by one when a value associated with that slot is encountered. Note that
the RAJA::atomicAdd operation uses an OpenMP atomic policy, which is compatible with the OpenMP loop
execution policy.

The CUDA and HIP versions are similar:

RAJA::forall< RAJA::cuda_exec<CUDA_BLOCK_SIZE> >(array_range,
[=] RAJA_DEVICE(int i) {

RAJA::atomicAdd<RAJA::cuda_atomic>(&bins[array[i]], 1);

});

and:

RAJA::forall< RAJA::hip_exec<HIP_BLOCK_SIZE> >(array_range,
[=] RAJA_DEVICE(int i) {

RAJA::atomicAdd<RAJA::hip_atomic>(&d_bins[d_array[i]], 1);

});

Here, the atomic add operations uses CUDA and HIP atomic policies, which are compatible with the CUDA and HIP
loop execution policies.

Note that RAJA provides an auto_atomic policy for easier usage and improved portability. This policy will do the
right thing in most circumstances. If OpenMP is enabled, the OpenMP atomic policy will be used, which is correct
in a sequential execution context as well. Otherwise, the sequential atomic policy will be applied. Similarly, if it is
encountered in a CUDA or HIP execution context, the corresponding GPU back-end atomic policy will be applied.

For example, here is the CUDA version that uses the ‘auto’ atomic policy:

RAJA::forall< RAJA::cuda_exec<CUDA_BLOCK_SIZE> >(array_range,
[=] RAJA_DEVICE(int i) {

RAJA::atomicAdd<RAJA::auto_atomic>(&bins[array[i]], 1);

});

6.1. RAJA User Guide 97

RAJA Documentation, Release 2022.03.1

and the HIP version:

RAJA::forall< RAJA::hip_exec<HIP_BLOCK_SIZE> >(array_range,
[=] RAJA_DEVICE(int i) {

RAJA::atomicAdd<RAJA::auto_atomic>(&d_bins[d_array[i]], 1);

});

The same CUDA and HIP loop execution policies as in the previous examples are used.

The file RAJA/examples/tut_atomic-histogram.cpp contains the complete working example code.

Parallel Scan Operations

Key RAJA features shown in this section:

• RAJA::inclusive_scan operation

• RAJA::inclusive_scan_inplace operation

• RAJA::exclusive_scan operation

• RAJA::exclusive_scan_inplace operation

• RAJA operators for different types of scans; e.g., plus, minimum, maximum, etc.

Below, we present examples of RAJA sequential, OpenMP, and CUDA scan operations and show how different scan
operations can be performed by passing different RAJA operators to the RAJA scan template methods. Each operator
is a template type, where the template argument is the type of the values it operates on. For a summary of RAJA scan
functionality, please see Parallel Scan Operations.

Note: RAJA scan operations use the same execution policy types that RAJA::forall loop execution templates do.

Each of the examples below uses the same integer arrays for input and output values. We set the input array and print
them as follows:

//
// Define array length
//

const int N = 20;

//
// Allocate and initialize vector data
//

int* in = memoryManager::allocate<int>(N);
int* out = memoryManager::allocate<int>(N);

std::iota(in, in + N, -1);

This generates the following sequence of values in the ‘in’ array:

3 -1 2 15 7 5 17 9 6 18 1 10 0 14 13 4 11 12 8 16

98 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Inclusive Scans

A sequential inclusive scan operation is performed by:

RAJA::inclusive_scan<RAJA::seq_exec>(RAJA::make_span(in, N),
RAJA::make_span(out, N));

Since no operator is passed to the scan method, the default ‘sum’ operation is applied and the result generated in the
‘out’ array is a prefix-sum based on the ‘in’ array. The resulting ‘out’ array contains the values:

3 2 4 19 26 31 48 57 63 81 82 92 92 106 119 123 134 146 154 170

We can be explicit about the operation used in the scan by passing the ‘plus’ operator to the scan method:

RAJA::inclusive_scan<RAJA::seq_exec>(RAJA::make_span(in, N),
RAJA::make_span(out, N),
RAJA::operators::plus<int>{});

The result in the ‘out’ array is the same.

An inclusive parallel scan operation using OpenMP multithreading is accomplished similarly by replacing the execu-
tion policy type:

RAJA::inclusive_scan<RAJA::omp_parallel_for_exec>(RAJA::make_span(in, N),
RAJA::make_span(out, N),
RAJA::operators::plus<int>{});

As is commonly done with RAJA, the only difference between this code and the previous one is that the execution
policy is different. If we want to run the scan on a GPU using CUDA, we would use a CUDA execution policy. This
will be shown shortly.

Exclusive Scans

A sequential exclusive scan (plus) operation is performed by:

RAJA::exclusive_scan<RAJA::seq_exec>(RAJA::make_span(in, N),
RAJA::make_span(out, N),
RAJA::operators::plus<int>{});

This generates the following sequence of values in the output array:

0 3 2 4 19 26 31 48 57 63 81 82 92 92 106 119 123 134 146 154

Note that the exclusive scan result is different than the inclusive scan result in two ways. The first entry in the result
is the identity of the operator used (here, it is zero, since the operator is ‘plus’) and, after that, the output sequence is
shifted one position to the right.

Running the same scan operation on a GPU using CUDA is done by:

RAJA::exclusive_scan<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(RAJA::make_span(in, N),
RAJA::make_span(out, N),
RAJA::operators::plus<int>{}

→˓);

Note that we pass the number of threads per CUDA thread block as the template argument to the CUDA execution
policy as we do in other cases.

6.1. RAJA User Guide 99

RAJA Documentation, Release 2022.03.1

In-place Scans and Other Operators

In-place scan operations generate the same results as the scan operations we have just described. However, the result
is generated in the input array directly so only one array is passed to in-place scan methods.

Here is a sequential inclusive in-place scan that uses the ‘minimum’ operator:

RAJA::inclusive_scan_inplace<RAJA::seq_exec>(RAJA::make_span(out, N),
RAJA::operators::minimum<int>{});

Note that, before the scan, we copy the input array into the output array so the result is generated in the output array.
Doing this, we avoid having to re-initialize the input array to use it in other examples.

This generates the following sequence in the output array:

3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Here is a sequential exclusive in-place scan that uses the ‘maximum’ operator:

RAJA::exclusive_scan_inplace<RAJA::seq_exec>(RAJA::make_span(out, N),
RAJA::operators::maximum<int>{});

This generates the following sequence in the output array:

-2147483648 3 3 3 15 15 15 17 17 17 18 18 18 18 18 18 18 18 18 18

Note that the first value in the result is the negative of the max int value; i.e., the identity of the maximum operator.

As you may expect at this point, running an exclusive in-place prefix-sum operation using OpenMP is accomplished
by:

RAJA::exclusive_scan_inplace<RAJA::omp_parallel_for_exec>(RAJA::make_span(out, N),
RAJA::operators::plus<int>

→˓{});

This generates the following sequence in the output array (as we saw earlier):

0 3 2 4 19 26 31 48 57 63 81 82 92 92 106 119 123 134 146 15

and the only difference is the execution policy template parameter.

Lastly, we show a parallel inclusive in-place prefix-sum operation using CUDA:

RAJA::inclusive_scan_inplace<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(RAJA::make_span(out,
→˓N),

RAJA::operators::plus
→˓<int>{});

Note: RAJA scans for the HIP back-end are similar to those for CUDA.

The file RAJA/examples/tut_scan.cpp contains the complete working example code.

Parallel Sort Operations

Key RAJA features shown in this section:

100 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

• RAJA::sort operation

• RAJA::sort_pairs operation

• RAJA::stable_sort operation

• RAJA::stable_sort_pairs operation

• RAJA comparators for different types of sorts; e.g., less, greater

Below, we present examples of RAJA sequential, OpenMP, and CUDA sort operations and show how different sort or-
derings can be achieved by passing different RAJA comparators to the RAJA sort template methods. Each comparator
is a template type, where the template argument is the type of the values it compares. For a summary of RAJA sort
functionality, please see Parallel Sort Operations.

Note: RAJA sort operations use the same execution policy types that RAJA::forall loop execution templates do.

Each of the examples below uses the same integer arrays for input and output values. We set the input array and print
them as follows:

//
// Define array length
//

const int N = 20;

//
// Allocate and initialize vector data
//

int* in = memoryManager::allocate<int>(N);
int* out = memoryManager::allocate<int>(N);

unsigned* in_vals = memoryManager::allocate<unsigned>(N);
unsigned* out_vals = memoryManager::allocate<unsigned>(N);

std::iota(in , in + N/2, 0);
std::iota(in + N/2, in + N , 0);
std::shuffle(in , in + N/2, std::mt19937{12345u});
std::shuffle(in + N/2, in + N , std::mt19937{67890u});

std::fill(in_vals , in_vals + N/2, 0);
std::fill(in_vals + N/2, in_vals + N , 1);

This generates the following sequence of values in the in array:

6 7 2 1 0 9 4 8 5 3 4 9 6 3 7 0 1 8 2 5

and the following sequence of (key, value) pairs in the in and in_vals arrays:

(6,0) (7,0) (2,0) (1,0) (0,0) (9,0) (4,0) (8,0) (5,0) (3,0)
(4,1) (9,1) (6,1) (3,1) (7,1) (0,1) (1,1) (8,1) (2,1) (5,1)

Unstable Sorts

A sequential unstable sort operation is performed by:

RAJA::sort<RAJA::seq_exec>(RAJA::make_span(out, N));

6.1. RAJA User Guide 101

RAJA Documentation, Release 2022.03.1

Since no comparator is passed to the sort method, the default less operation is applied and the result generated in the
out array is non-decreasing sort on the out array. The resulting out array contains the values:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

We can be explicit about the operation used in the sort by passing the less operator to the sort method:

RAJA::sort<RAJA::seq_exec>(RAJA::make_span(out, N),
RAJA::operators::less<int>{});

The result in the out array is the same.

An unstable parallel sort operation using OpenMP multi-threading is accomplished similarly by replacing the execu-
tion policy type:

RAJA::sort<RAJA::omp_parallel_for_exec>(RAJA::make_span(out, N),
RAJA::operators::less<int>{});

As is commonly done with RAJA, the only difference between this code and the previous one is that the execution
policy is different. If we want to run the sort on a GPU using CUDA, we would use a CUDA execution policy. This
will be shown shortly.

Stable Sorts

A sequential stable sort (less) operation is performed by:

RAJA::stable_sort<RAJA::seq_exec>(RAJA::make_span(out, N),
RAJA::operators::less<int>{});

This generates the following sequence of values in the output array:

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Note that the stable sort result is the same as the unstable sort in this case because we are sorting integers. We will
show an example of sorting pairs later where this is not the case.

Running the same sort operation on a GPU using CUDA is done by:

RAJA::stable_sort<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(RAJA::make_span(out, N),
RAJA::operators::less<int>{});

Note that we pass the number of threads per CUDA thread block as the template argument to the CUDA execution
policy as we do in other cases.

Other Comparators

Using a different comparator allows sorting in a different order. Here is a sequential stable sort that uses the greater
operator:

RAJA::stable_sort<RAJA::seq_exec>(RAJA::make_span(out, N),
RAJA::operators::greater<int>{});

This generates the following sequence of values in non-increasing order in the output array:

102 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0

Note that the only operators provided by RAJA that are valid to use in sort because they form a strict weak ordering
of elements for arithmetic types are less and greater. Also note that the the cuda sort backend only supports RAJA’s
operators less and greater.

Sort Pairs

Sort Pairs operations generate the same results as the sort operations we have just described. However, an additional
array of values is also permuted to match the sorted array so two arrays are passed to sort pairs methods.

Here is a sequential unstable sort pairs that uses the less operator:

RAJA::sort_pairs<RAJA::seq_exec>(RAJA::make_span(out, N),
RAJA::make_span(out_vals, N),
RAJA::operators::less<int>{});

This generates the following sequence in the output array:

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1) (4,0) (4,1)
(5,1) (5,0) (6,1) (6,0) (7,0) (7,1) (8,0) (8,1) (9,1) (9,0)

Note that some of the pairs with equivalent keys stayed in the same order they appeared in the unsorted arrays like
(8,0) (8,1), while others are reversed like (9,1) (9,0).

Here is a sequential stable sort pairs that uses the greater operator:

RAJA::stable_sort_pairs<RAJA::seq_exec>(RAJA::make_span(out, N),
RAJA::make_span(out_vals, N),
RAJA::operators::greater<int>{});

This generates the following sequence in the output array:

(9,0) (9,1) (8,0) (8,1) (7,0) (7,1) (6,0) (6,1) (5,0) (5,1)
(4,0) (4,1) (3,0) (3,1) (2,0) (2,1) (1,0) (1,1) (0,0) (0,1)

Note that all pairs with equivalent keys stayed in the same order that they appeared in the unsorted arrays.

As you may expect at this point, running an stable sort pairs operation using OpenMP is accomplished by:

RAJA::stable_sort_pairs<RAJA::omp_parallel_for_exec>(RAJA::make_span(out, N),
RAJA::make_span(out_vals, N),
RAJA::operators::greater<int>{}

→˓);

This generates the following sequence in the output array (as we saw earlier):

(9,0) (9,1) (8,0) (8,1) (7,0) (7,1) (6,0) (6,1) (5,0) (5,1)
(4,0) (4,1) (3,0) (3,1) (2,0) (2,1) (1,0) (1,1) (0,0) (0,1)

and the only difference is the execution policy template parameter.

Lastly, we show a parallel unstable sort pairs operation using CUDA:

RAJA::sort_pairs<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(RAJA::make_span(out, N),
RAJA::make_span(out_vals, N),
RAJA::operators::greater<int>{});

6.1. RAJA User Guide 103

RAJA Documentation, Release 2022.03.1

Note: RAJA sorts for the HIP back-end are similar to those for CUDA.

The file RAJA/examples/tut_sort.cpp contains the complete working example code.

Complex Loops: Transformations and Advanced RAJA Features

The examples in this section illustrate how to use RAJA::kernel methods to execute complex loop kernels, such
as nested loops. It also describes how to construct kernel execution policies, use different view types and tiling
mechanisms to transform loop patterns.

Matrix Multiplication (Nested Loops)

Key RAJA features shown in the following examples:

• RAJA::kernel template for nested-loop execution

• RAJA kernel execution policies

• RAJA::View multi-dimensional data access

• Basic RAJA nested-loop interchange

• Specifying lambda arguments through statements

In this example, we present different ways to perform multiplication of two square matrices ‘A’ and ‘B’ of dimension
N x N and store the result in matrix ‘C’. To motivate the use of the RAJA::View abstraction that we use, we define
the following macros to access the matrix entries in the C-version:

#define A(r, c) A[c + N * r]
#define B(r, c) B[c + N * r]
#define C(r, c) C[c + N * r]

Then, a typical C-style sequential matrix multiplication operation looks like this:

for (int row = 0; row < N; ++row) {
for (int col = 0; col < N; ++col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {
dot += A(row, k) * B(k, col);

}
C(row, col) = dot;

}
}

For the RAJA variants of the matrix multiple operation presented below, we use RAJA::View objects, which allow
us to access matrix entries in a multi-dimensional manner similar to the C-style version that uses macros. We create a
two-dimensional N x N ‘view’ for each of the three matrices:

RAJA::View<double, RAJA::Layout<DIM>> Aview(A, N, N);
RAJA::View<double, RAJA::Layout<DIM>> Bview(B, N, N);
RAJA::View<double, RAJA::Layout<DIM>> Cview(C, N, N);

104 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

We show the most basic RAJA view usage here – to simplify multi-dimensional array indexing. RAJA views can be
used to abstract a variety of different data layouts and access patterns, including stride permutations, offsets, etc. For
more information about RAJA views, see View and Layout.

We also use the following RAJA::RangeSegment objects to define the matrix row and column and dot product
iteration spaces:

RAJA::RangeSegment row_range(0, N);
RAJA::RangeSegment col_range(0, N);
RAJA::RangeSegment dot_range(0, N);

Should I Use RAJA::forall For Nested Loops?

We begin by walking through some RAJA variants of the matrix multiplication operation that show RAJA usage that
we do not recommend, but which helps to motivate the RAJA::kernel interface. We noted some rationale behind
this preference in Complex Loops (RAJA::kernel). Here, we discuss this in more detail.

Starting with the C-style kernel above, we first convert the outermost ‘row’ loop to a RAJA::forall method call
with a sequential execution policy:

RAJA::forall<RAJA::loop_exec>(row_range, [=](int row) {

for (int col = 0; col < N; ++col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {
dot += Aview(row, k) * Bview(k, col);

}
Cview(row, col) = dot;

}

});

Here, the lambda expression for the loop body contains the inner ‘col’ and ‘k’ loops.

Note that changing the RAJA execution policy to an OpenMP or CUDA policy enables the outer ‘row’ loop to run in
parallel. When this is done, each thread executes the lambda expression body, which contains the ‘col’ and ‘k’ loops.
Although this enables some parallelism, there is still more available. In a bit, we will how the RAJA::kernel
interface helps us to expose all available parallelism.

Next, we nest a RAJA::forall method call for the ‘column’ loop inside the outer lambda expression:

RAJA::forall<RAJA::loop_exec>(row_range, [=](int row) {

RAJA::forall<RAJA::loop_exec>(col_range, [=](int col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {
dot += Aview(row, k) * Bview(k, col);

}
Cview(row, col) = dot;

});

});

6.1. RAJA User Guide 105

RAJA Documentation, Release 2022.03.1

Here, the innermost lambda expression contains the row-column dot product initialization, the inner ‘k’ loop for the
dot product, and the operation that assigns the dot product to the proper location in the result matrix.

Note that we can replace either RAJA execution policy with an OpenMP execution policy to parallelize either the
‘row’ or ‘col’ loop. For example, we can use an OpenMP execution policy on the outer ‘row’ loop and the result will
be the same as using an OpenMP execution policy in the earlier case that used a RAJA::forall statement for the
outer loop.

We do not recommend using a parallel execution policy for both loops in this type of kernel as the results may not be
what is expected and RAJA provides better mechanisms for parallelizing nested loops. Also, changing the outer loop
policy to a CUDA policy will not compile. This is by design in RAJA since nesting forall statements inside lambdas in
this way has limited utility, is inflexible, and can hinder performance when compared to RAJA::kernel constructs,
which we describe next.

Basic RAJA::kernel Variants

Next, we show how to cast the matrix-multiplication operation using the RAJA::kernel interface, which was
introduced in Complex Loops (RAJA::kernel). We first present a complete example, and then describe its key elements,
noting important differences between RAJA::kernel and RAJA::forall loop execution interfaces.

using EXEC_POL =
RAJA::KernelPolicy<

RAJA::statement::For<1, RAJA::loop_exec, // row
RAJA::statement::For<0, RAJA::loop_exec, // col
RAJA::statement::Lambda<0>

>
>

>;

RAJA::kernel<EXEC_POL>(RAJA::make_tuple(col_range, row_range),
[=](int col, int row) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {

dot += Aview(row, k) * Bview(k, col);
}
Cview(row, col) = dot;

});

Here, RAJA::kernel expresses the outer ‘row’ and ‘col’ loops; the inner ‘k’ loop is included in the lambda
expression for the loop body. Note that the RAJA::kernel template takes two arguments. Similar to
RAJA::forall, the first argument describes the iteration space and the second argument is the lambda loop body.
Unlike RAJA::forall, the iteration space for RAJA::kernel is defined as a tuple of ranges (created via the
RAJA::make_tuple method), one for the ‘col’ loop and one for the ‘row’ loop. Also, the lambda expression takes
an iteration index argument for entry in the iteration space tuple.

Note: The number and order of lambda arguments must match the number and order of the elements in the tuple for
this to be correct.

Another important difference between RAJA::forall and RAJA::kernel involves the execution policy template
parameter. The execution policy defined by the RAJA::KernelPolicy type used here specifies a policy for each
level in the loop nest via nested RAJA::statement::For types. Here, the row and column loops will both execute
sequentially. The integer that appears as the first template parameter to each ‘For’ statement corresponds to the position
of a range in the iteration space tuple and also to the associated iteration index argument to the lambda. Here, ‘0’ is

106 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

the ‘col’ range and ‘1’ is the ‘row’ range because that is the order those ranges appear in the tuple. The innermost type
RAJA::statement::Lambda<0> indicates that the first lambda expression (the only one in this case!) argument
passed to the RAJA::kernel method will be invoked inside the nested loops.

The integer arguments to the RAJA::statement::For types are needed to enable a variety of kernel execution
patterns and transformations. Since the kernel policy is a single unified construct, it can be used to parallelize the nested
loop iterations together, which we will show later. Also, the levels in the loop nest can be permuted by reordering the
policy arguments; this is analogous to how one would reorder C-style nested loops; i.e., reorder for-statements for
each loop nest level. These execution patterns and transformations can be achieved by changing only the policy and
leaving the loop kernel code as is.

If we want to execute the row loop using OpenMP multithreaded parallelism and keep the column loop sequential, the
policy we would use is:

using EXEC_POL1 =
RAJA::KernelPolicy<

RAJA::statement::For<1, RAJA::omp_parallel_for_exec, // row
RAJA::statement::For<0, RAJA::loop_exec, // col
RAJA::statement::Lambda<0>

>
>

>;

To swap the loop nest ordering and keep the same execution policy on each loop, we would use the following policy,
which swaps the RAJA::statement::For types. The inner loop is now the ‘row’ loop and is run in parallel; the
outer loop is now the ‘col’ loop and is still sequential:

using EXEC_POL2 =
RAJA::KernelPolicy<

RAJA::statement::For<0, RAJA::loop_exec, // col
RAJA::statement::For<1, RAJA::omp_parallel_for_exec, // row
RAJA::statement::Lambda<0>

>
>

>;

Note: It is important to emphasize that these kernel transformations, and others, can be done by switching the
RAJA::KernelPolicy type with no changes to the loop kernel code.

In Nested Loop Interchange, we provide a more detailed discussion of the mechanics of loop nest reordering. Next,
we show other variations of the matrix multiplication kernel that illustrate other RAJA::kernel features.

More Complex RAJA::kernel Variants

The matrix multiplication kernel variations described in this section use execution policies to express the outer row
and col loops as well as the inner dot product loop using the RAJA kernel interface. They illustrate more complex
policy examples and show additional RAJA kernel features.

The first example uses sequential execution for all loops:

using EXEC_POL6a =
RAJA::KernelPolicy<

RAJA::statement::For<1, RAJA::loop_exec,
RAJA::statement::For<0, RAJA::loop_exec,

(continues on next page)

6.1. RAJA User Guide 107

RAJA Documentation, Release 2022.03.1

(continued from previous page)

RAJA::statement::Lambda<0, RAJA::Params<0>>, // dot = 0.0
RAJA::statement::For<2, RAJA::loop_exec,
RAJA::statement::Lambda<1> // inner loop: dot += ...

>,
RAJA::statement::Lambda<2, RAJA::Segs<0, 1>, RAJA::Params<0>> // set

→˓C(row, col) = dot
>

>
>;

RAJA::kernel_param<EXEC_POL6a>(
RAJA::make_tuple(col_range, row_range, dot_range),

RAJA::tuple<double>{0.0}, // thread local variable for 'dot'

// lambda 0
[=] (double& dot) {

dot = 0.0;
},

// lambda 1
[=] (int col, int row, int k, double& dot) {

dot += Aview(row, k) * Bview(k, col);
},

// lambda 2
[=] (int col, int row, double& dot) {

Cview(row, col) = dot;
}

);

Note that we use a RAJA::kernel_param method to execute the kernel. It is similar to RAJA::kernel except
that it accepts a tuple as the second argument (between the iteration space tuple and the lambda expressions). The
tuple is a set of parameters that can be used in the kernel to pass data into lambda expressions. Here, the parameter
tuple holds a single scalar variable for the dot product.

The remaining arguments include a sequence of lambda expressions representing different parts of the inner loop
body. We use three lambda expressions that: initialize the dot product variable (lambda 0), define the ‘k’ inner loop
row-col dot product operation (lambda 1), and store the computed row-col dot product in the proper location in the
result matrix (lambda 2). Note that all lambdas take the same arguments in the same order, which is required for the
kernel to be well-formed. In addition to the loop index variables, we pass the scalar dot product variable into each
lambda. This enables the same variables to be used in all three lambda expressions. However, observe that not all
lambda expressions use all three index variables. They are declared, but left unnamed to prevent compiler warnings.

Alternatively, the lambda statements in the execution policy may be used to specify which arguments each lambda
takes and in which order. For example:

// Alias for convenience
using RAJA::Segs;
using RAJA::Params;

using EXEC_POL6b =
RAJA::KernelPolicy<

RAJA::statement::For<1, RAJA::loop_exec,
RAJA::statement::For<0, RAJA::loop_exec,

(continues on next page)

108 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

RAJA::statement::Lambda<0, Params<0>>, // dot = 0.0
RAJA::statement::For<2, RAJA::loop_exec,
RAJA::statement::Lambda<1, Segs<0,1,2>, Params<0>> // dot += ...

>,
RAJA::statement::Lambda<2, Segs<0,1>, Params<0>> // C(row, col) = dot

>
>

>;

RAJA::kernel_param<EXEC_POL6b>(
RAJA::make_tuple(col_range, row_range, dot_range),

RAJA::tuple<double>{0.0}, // thread local variable for 'dot'

// lambda 0
[=] (double& dot) {

dot = 0.0;
},

// lambda 1
[=] (int col, int row, int k, double& dot) {

dot += Aview(row, k) * Bview(k, col);
},

// lambda 2
[=] (int col, int row, double& dot) {

Cview(row, col) = dot;
}

);

By using RAJA::statement::Lambda parameters in this way, the code potentially indicates more clearly which
areguments are used. Of course, this makes the execution policy more verbose, but that is typically hidden away in
a header file. Statements such as RAJA::Segs, and RAJA::Params identify the positions of the segments and
params in the tuples to be used as arguments to the lambda expressions.

As we noted earlier, the execution policy type passed to the RAJA::kernel_parammethod as a template parameter
describes how the statements and lambda expressions are assembled to form the complete kernel. To illustrate this, we
describe various policies that enable the kernel to run in different ways. In each case, the RAJA::kernel_param
method call, including its arguments is the same. The curious reader will inspect the example code in the file listed
below to see that this is indeed the case. In the interest of simplicity, the remaining matrix multiplication examples do
not use RAJA::statement::Lambda parameters to specify arguments to the lambda expressions.

Next, we show how to collapse nested loops in an OpenMP parallel region using a
RAJA::statement::Collapse type in the execution policy. This allows one to parallelize multiple lev-
els in a loop nest using OpenMP directives, for instance. The following policy will collapse the two outer loops into
one OpenMP parallel region:

using EXEC_POL7 =
RAJA::KernelPolicy<

RAJA::statement::Collapse<RAJA::omp_parallel_collapse_exec,
RAJA::ArgList<1, 0>, // row, col

RAJA::statement::Lambda<0, RAJA::Params<0>>, // dot = 0.0
RAJA::statement::For<2, RAJA::loop_exec,
RAJA::statement::Lambda<1> // inner loop: dot += ...

>,

(continues on next page)

6.1. RAJA User Guide 109

RAJA Documentation, Release 2022.03.1

(continued from previous page)

RAJA::statement::Lambda<2, RAJA::Segs<0, 1>, RAJA::Params<0>> // set C(row,
→˓col) = dot

>
>;

The RAJA::ArgList type indicates which loops in the nest are to be collapsed and their nesting order within the
collapse region. The integers passed to ArgList are indices of entries in the tuple of iteration spaces and indicate
inner to outer loop levels when read from right to left (i.e., here ‘1, 0’ indicates the column loop is the inner loop
and the row loop is the outer). For this transformation there are no statement::For types and policies for the
individual loop levels inside the OpenMP collapse region.

Lastly, we show how to use RAJA::statement::CudaKernel and RAJA::statement::HipKernel types
to generate GPU kernels launched with a particular thread-block decomposition. We reiterate that although the policies
are different, the kernels themselves are identical to the sequential and OpenMP variants above.

Here is a policy that will distribute the row indices across CUDA thread blocks and column indices across threads in
the x dimension of each block:

using EXEC_POL8 =
RAJA::KernelPolicy<

RAJA::statement::CudaKernel<
RAJA::statement::For<1, RAJA::cuda_block_x_loop, // row
RAJA::statement::For<0, RAJA::cuda_thread_x_loop, // col

RAJA::statement::Lambda<0, RAJA::Params<0>>, // dot = 0.0
RAJA::statement::For<2, RAJA::seq_exec,

RAJA::statement::Lambda<1> // dot += ...
>,
RAJA::statement::Lambda<2, RAJA::Segs<0, 1>, RAJA::Params<0>> // set C

→˓= ...
>

>
>

>;

This is equivalent to defining a CUDA kernel with the lambda body inside it and defining row and column indices as:

int row = blockIdx.x;
int col = threadIdx.x;

and launching the kernel with appropriate CUDA grid and thread-block dimensions.

The HIP execution policy is similar:

using EXEC_POL8 =
RAJA::KernelPolicy<

RAJA::statement::HipKernel<
RAJA::statement::For<1, RAJA::hip_block_x_loop, // row
RAJA::statement::For<0, RAJA::hip_thread_x_loop, // col
RAJA::statement::Lambda<0, RAJA::Params<0>>, // dot = 0.0
RAJA::statement::For<2, RAJA::seq_exec,

RAJA::statement::Lambda<1> // dot += ...
>,
RAJA::statement::Lambda<2,
RAJA::Segs<0,1>, RAJA::Params<0>> // set C = ...

>
>

(continues on next page)

110 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

>
>;

The following policy will tile row and col indices across two-dimensional CUDA thread blocks with ‘x’ and ‘y’
dimensions defined by a ‘CUDA_BLOCK_SIZE’ parameter that can be set at compile time. Within each tile, the
kernel iterates are executed by CUDA threads.

using EXEC_POL9a =
RAJA::KernelPolicy<

RAJA::statement::CudaKernel<
RAJA::statement::Tile<1, RAJA::tile_fixed<CUDA_BLOCK_SIZE>,

RAJA::cuda_block_y_loop,
RAJA::statement::Tile<0, RAJA::tile_fixed<CUDA_BLOCK_SIZE>,

RAJA::cuda_block_x_loop,
RAJA::statement::For<1, RAJA::cuda_thread_y_loop, // row
RAJA::statement::For<0, RAJA::cuda_thread_x_loop, // col

RAJA::statement::Lambda<0, RAJA::Params<0>>, // dot = 0.0
RAJA::statement::For<2, RAJA::seq_exec,

RAJA::statement::Lambda<1> // dot += ...
>,
RAJA::statement::Lambda<2, RAJA::Segs<0, 1>, RAJA::Params<0>> //

→˓set C = ...
>

>
>

>
>

>;

Note that the tiling mechanism requires a RAJA::statement::Tile type, with a tile size and a tiling execution
policy, plus a RAJA::statement::For type with an execution execution policy for each tile dimension.

The analogous HIP policy is:

using EXEC_POL9b =
RAJA::KernelPolicy<

RAJA::statement::HipKernel<
RAJA::statement::Tile<1, RAJA::tile_fixed<HIP_BLOCK_SIZE>,

RAJA::hip_block_y_loop,
RAJA::statement::Tile<0, RAJA::tile_fixed<HIP_BLOCK_SIZE>,

RAJA::hip_block_x_loop,
RAJA::statement::For<1, RAJA::hip_thread_y_loop, // row
RAJA::statement::For<0, RAJA::hip_thread_x_loop, // col

RAJA::statement::Lambda<0, Params<0>>, // dot = 0.0
RAJA::statement::For<2, RAJA::seq_exec,
RAJA::statement::Lambda<1, Segs<0,1,2>, Params<0>> // dot += ...

>,
RAJA::statement::Lambda<2, Segs<0,1>, Params<0>> // set C = ...

>
>

>
>

>
>;

In Tiled Matrix Transpose and Matrix Transpose with Local Array, we will discuss loop tiling in more detail including
how it can be used to improve performance of certain algorithms.

6.1. RAJA User Guide 111

RAJA Documentation, Release 2022.03.1

The file RAJA/examples/tut_matrix-multiply.cpp contains the complete working code for all examples
described in this section, plus others that show a variety of RAJA::kernel execution policy types. It also contains
a raw CUDA version of the kernel for comparison.

Nested Loop Interchange

Key RAJA features shown in this example:

• RAJA::kernel loop iteration templates

• RAJA nested loop execution policies

• Nested loop reordering (i.e., loop interchange)

• RAJA strongly-types indices

In Complex Loops (RAJA::kernel), we introduced the basic mechanics in RAJA for representing nested loops. In Ma-
trix Multiplication (Nested Loops), we presented a complete example using RAJA nested loop features. The following
example shows the nested loop interchange process in more detail. Specifically, we describe how to reorder nested
policy arguments and introduce strongly-typed index variables that can help users write correct nested loop code with
RAJA. The example does not perform any actual computation; each kernel simply prints out the loop indices in the
order that the iteration spaces are traversed. Thus, only sequential execution policies are used. However, the mechanics
work the same way for other RAJA execution policies.

Before we dive into the example, we note important features applied here that represent the main differences between
nested-loop RAJA and the RAJA::forall loop construct for simple (i.e., non-nested) loops:

• An index space (e.g., range segment) and lambda index argument are required for each level in a loop nest. This
example contains triply-nested loops, so there will be three ranges and three index arguments.

• The index spaces for the nested loop levels are specified in a RAJA tuple object. The order of spaces in the
tuple must match the order of index arguments to the lambda for this to be correct, in general. RAJA provides
strongly-typed indices to help with this, which we show here.

• An execution policy is required for each level in a loop nest. These are specified as nested statements in the
RAJA::KernelPolicy type.

• The loop nest ordering is specified in the nested kernel policy – the first statement::For type identifies the
outermost loop, the second statement::For type identifies the loop nested inside the outermost loop, and
so on.

We begin by defining three named strongly-typed variables for the loop index variables.

RAJA_INDEX_VALUE(KIDX, "KIDX");
RAJA_INDEX_VALUE(JIDX, "JIDX");
RAJA_INDEX_VALUE(IIDX, "IIDX");

We also define three typed range segments which bind the ranges to the index variable types via template specializa-
tion:

RAJA::TypedRangeSegment<KIDX> KRange(2, 4);
RAJA::TypedRangeSegment<JIDX> JRange(1, 3);
RAJA::TypedRangeSegment<IIDX> IRange(0, 2);

When these features are used as in this example, the compiler will generate error messages if the lambda expression
index argument ordering and types do not match the index ordering in the tuple.

We present a complete example, and then describe its key elements:

112 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

using KJI_EXECPOL = RAJA::KernelPolicy<
RAJA::statement::For<2, RAJA::seq_exec, // k
RAJA::statement::For<1, RAJA::seq_exec, // j
RAJA::statement::For<0, RAJA::seq_exec,// i

RAJA::statement::Lambda<0>
>

>
>

>;

RAJA::kernel<KJI_EXECPOL>(RAJA::make_tuple(IRange, JRange, KRange),
[=] (IIDX i, JIDX j, KIDX k) {

printf(" (%d, %d, %d) \n", (int)(*i), (int)(*j), (int)(*k));
});

Here, the RAJA::kernel execution template takes two arguments: a tuple of ranges, one for each of the three levels
in the loop nest, and the lambda expression loop body. Note that the lambda has an index argument for each range and
that their order and types match.

The execution policy for the loop nest is specified in the RAJA::KernelPolicy type. Each level in the loop nest is
identified by a statement::For type, which identifies the iteration space and execution policy for the level. Here,
each level uses a sequential execution policy. This is for illustration purposes; if you run the example code, you will
see the loop index triple printed in the exact order in which the kernel executes. The integer that appears as the first
template argument to each statement::For type corresponds to the index of a range in the tuple and also to the
associated lambda index argument; i.e., ‘0’ is for ‘i’, ‘1’ is for ‘j’, and ‘2’ is for ‘k’.

Here, the ‘k’ index corresponds to the outermost loop (slowest index), the ‘j’ index corresponds to the middle loop,
and the ‘i’ index is for the innermost loop (fastest index). In other words, if written using C-style for-loops, the loop
would appear as:

for (int k = 2; k< 4; ++k) {
for (int j = 1; j < 3; ++j) {
for (int i = 0; i < 2; ++i) {
// print loop index triple...

}
}

}

The integer argument to each statement::For type is needed so that the levels in the loop nest can be reordered
by changing the policy while the kernel remains the same. Next, we permute the loop nest ordering so that the ‘j’ loop
is the outermost, the ‘i’ loop is in the middle, and the ‘k’ loop is the innermost with the following policy:

using JIK_EXECPOL = RAJA::KernelPolicy<
RAJA::statement::For<1, RAJA::seq_exec, // j
RAJA::statement::For<0, RAJA::seq_exec, // i
RAJA::statement::For<2, RAJA::seq_exec,// k

RAJA::statement::Lambda<0>
>

>
>

>;

Note that we have simply reordered the nesting of the RAJA::statement::For types. This is analogous to
reordering ‘for’ statements in traditional C-style nested loops. Here, the analogous C-style loop nest would appear as:

for (int j = 1; j < 3; ++j) {
for (int i = 0; i < 2; ++i) {

(continues on next page)

6.1. RAJA User Guide 113

RAJA Documentation, Release 2022.03.1

(continued from previous page)

for (int k = 2; k< 4; ++k) {
// print loop index triple...

}
}

}

Finally, for completeness, we permute the loops again so that the ‘i’ loop is the outermost, the ‘k’ loop is in the middle,
and the ‘j’ loop is the innermost with the following policy:

using IKJ_EXECPOL = RAJA::KernelPolicy<
RAJA::statement::For<0, RAJA::seq_exec, // i
RAJA::statement::For<2, RAJA::seq_exec, // k
RAJA::statement::For<1, RAJA::seq_exec,// j

RAJA::statement::Lambda<0>
>

>
>

>;

The analogous C-style loop nest would appear as:

for (int i = 0; j < 2; ++i) {
for (int k = 2; k< 4; ++k) {
for (int j = 1; j < 3; ++j) {
// print loop index triple...

}
}

}

Hopefully, it should be clear how this works at this point. If not, the typed indices and typed range segments can help
by enabling the compiler to let you know when something is not correct.

For example, this version of the loop will generate a compilation error (note that the kernel execution policy is the
same as in the previous example):

RAJA::kernel<IKJ_EXECPOL>(RAJA::make_tuple(IRange, JRange, KRange),
[=] (JIDX i, IIDX j, KIDX k) {

printf(" (%d, %d, %d) \n", (int)(*i), (int)(*j), (int)(*k));
});

If you carefully compare the range ordering in the tuple to the lambda argument types, you will see what’s wrong.

Do you see the problem?

The file RAJA/examples/tut_nested-loop-reorder.cpp contains the complete working example code.

Batched Matrix-Multiply (Permuted Layouts)

Key RAJA features shown in the following example:

• RAJA::forall loop traversal template

• RAJA execution policies

• RAJA::View multi-dimensional data access

• RAJA::make_permuted_layout method to permute data ordering

114 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

This example performs batched matrix multiplication for a set of 3× 3 matrices using two different data layouts.

Matrices 𝐴 and 𝐵 are multiplied with the product stored in matrix 𝐶. The notation 𝐴𝑒
𝑟𝑐 indicates the row r and column

c entry of matrix e. We describe the two data layouts we use for two matrices. The extension to more than two matrices
is straightforward. Using different data layouts, we can assess which performs best for a given execution policy and
computing environment.

Layout 1: Entries in each matrix are grouped together with each each having row major ordering; i.e.,

𝐴 = [𝐴0
00, 𝐴

0
01, 𝐴

0
02, 𝐴

0
10, 𝐴

0
11, 𝐴

0
12, 𝐴

0
20, 𝐴

0
21, 𝐴

0
22,

𝐴1
00, 𝐴

1
01, 𝐴

1
02, 𝐴

1
10, 𝐴

1
11, 𝐴

1
12, 𝐴

1
20, 𝐴

1
21, 𝐴

1
22];

Layout 2: Matrix entries are first ordered by matrix index, then by column index, and finally by row index; i.e.,

𝐴 = [𝐴0
00, 𝐴

1
00, 𝐴

0
01, 𝐴

1
01, 𝐴

0
02, 𝐴

1
02, 𝐴

0
10, 𝐴

1
10, 𝐴

0
11,

𝐴1
11, 𝐴

0
12, 𝐴

1
12, 𝐴

0
20, 𝐴

1
20, 𝐴

0
21, 𝐴

1
21, 𝐴

0
22, 𝐴

1
22];

Permuted Layouts

Next, we show how to construct the two data layouts using RAJA::View and RAJA::Layout objects. For more
details on these RAJA concepts, please refer to View and Layout.

The views for layout 1 are constructed as follows:

std::array<RAJA::idx_t, 3> perm1 {{0, 1, 2}};
auto layout1 =

RAJA::make_permuted_layout({{N, N_r, N_c}}, perm1);

RAJA::View<double, RAJA::Layout<3, Index_type, 2>> Aview(A, layout1);
RAJA::View<double, RAJA::Layout<3, Index_type, 2>> Bview(B, layout1);
RAJA::View<double, RAJA::Layout<3, Index_type, 2>> Cview(C, layout1);

The first argument to RAJA::make_permuted_layout is a C++ array whose entries correspond to the size of
each array dimension; i.e., we have ‘N’ 𝑁𝑟 × 𝑁𝑐 matrices. The second argument describes the striding order of the
array dimensions. Note that since this case follows the default RAJA ordering convention (see View and Layout), we
use the identity permutation ‘(0,1,2)’. For each matrix, the column index (index 2) has unit stride and the row index
(index 1) has stride 3 (number of columns). The matrix index (index 0) has stride 9 (𝑁𝑐 ×𝑁𝑟).

The views for layout 2 are constructed similarly:

std::array<RAJA::idx_t, 3> perm2 {{1, 2, 0}};
auto layout2 =

RAJA::make_permuted_layout({{N, N_r, N_c}}, perm2);

RAJA::View<double, RAJA::Layout<3, Index_type, 0>> Aview2(A2, layout2);
RAJA::View<double, RAJA::Layout<3, Index_type, 0>> Bview2(B2, layout2);
RAJA::View<double, RAJA::Layout<3, Index_type, 0>> Cview2(C2, layout2);

Here, the first argument to RAJA::make_permuted_layout is the same as in layout 1 since we have the same
number of matrices, matrix dimensions and we will use the same indexing scheme to access the matrix entries. How-
ever, the permutation we use is ‘(1,2,0)’. This makes the matrix index (index 0) have unit stride, the column index
(index 2) for each matrix has stride N, which is the number of matrices, and the row index (index 1) has stride 𝑁×𝑁𝑐.

Example Code

Complete working examples that run the batched matrix-multiplication computation for both layouts and various
RAJA execution policies is located in the file RAJA/examples/tut_batched-matrix-multiply.cpp.

6.1. RAJA User Guide 115

RAJA Documentation, Release 2022.03.1

It compares the execution run times of the two layouts described above using four RAJA back-ends (Sequential,
OpenMP, CUDA, and HIP). The OpenMP version for layout 1 looks like this:

RAJA::forall<RAJA::omp_parallel_for_exec>(
RAJA::RangeSegment(0, N), [=](Index_type e) {

Cview(e, 0, 0) = Aview(e, 0, 0) * Bview(e, 0, 0)
+ Aview(e, 0, 1) * Bview(e, 1, 0)
+ Aview(e, 0, 2) * Bview(e, 2, 0);

Cview(e, 0, 1) = Aview(e, 0, 0) * Bview(e, 0, 1)
+ Aview(e, 0, 1) * Bview(e, 1, 1)
+ Aview(e, 0, 2) * Bview(e, 2, 1);

Cview(e, 0, 2) = Aview(e, 0, 0) * Bview(e, 0, 2)
+ Aview(e, 0, 1) * Bview(e, 1, 2)
+ Aview(e, 0, 2) * Bview(e, 2, 2);

Cview(e, 1, 0) = Aview(e, 1, 0) * Bview(e, 0, 0)
+ Aview(e, 1, 1) * Bview(e, 1, 0)
+ Aview(e, 1, 2) * Bview(e, 2, 0);

Cview(e, 1, 1) = Aview(e, 1, 0) * Bview(e, 0, 1)
+ Aview(e, 1, 1) * Bview(e, 1, 1)
+ Aview(e, 1, 2) * Bview(e, 2, 1);

Cview(e, 1, 2) = Aview(e, 1, 0) * Bview(e, 0, 2)
+ Aview(e, 1, 1) * Bview(e, 1, 2)
+ Aview(e, 1, 2) * Bview(e, 2, 2);

Cview(e, 2, 0) = Aview(e, 2, 0) * Bview(e, 0, 0)
+ Aview(e, 2, 1) * Bview(e, 1, 0)
+ Aview(e, 2, 2) * Bview(e, 2, 0);

Cview(e, 2, 1) = Aview(e, 2, 0) * Bview(e, 0, 1)
+ Aview(e, 2, 1) * Bview(e, 1, 1)
+ Aview(e, 2, 2) * Bview(e, 2, 1);

Cview(e, 2, 2) = Aview(e, 2, 0) * Bview(e, 0, 2)
+ Aview(e, 2, 1) * Bview(e, 1, 2)
+ Aview(e, 2, 2) * Bview(e, 2, 2);

});

The only differences between the lambda loop body for layout 1 and layout 2 cases are the names of the views. To
make the algorithm code identical for all cases, we would use type aliases for the view and layout types in a header
file similarly to how we would abstract the execution policy out of the algorithm.

Stencil Computations (View Offsets)

Key RAJA features shown in the following example:

• RAJA::Kernel loop execution template

• RAJA kernel execution policies

• RAJA::View multi-dimensional data access

• RAJA:make_offset_layout method to apply index offsets

This example applies a five-cell stencil sum to the interior cells of a two-dimensional square lattice and stores the
resulting sums in a second lattice of equal size. The five-cell stencil accumulates values from each interior cell and its
four neighbors. We use RAJA::View and RAJA::Layout constructs to simplify the multi-dimensional indexing
so that we can write the stencil operation as follows:

116 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

output(row, col) = input(row, col) +
input(row - 1, col) + input(row + 1, col) +
input(row, col - 1) + input(row, col + 1)

A lattice is assumed to have 𝑁𝑟 × 𝑁𝑐 interior cells with unit values surrounded by a halo of cells containing zero
values for a total dimension of (𝑁𝑟 + 2) × (𝑁𝑐 + 2). For example, when 𝑁𝑟 = 𝑁𝑐 = 3, the input lattice and values
are:

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

After applying the stencil, the output lattice and values are:

0 0 0 0 0
0 3 4 3 0
0 4 5 4 0
0 3 4 3 0
0 0 0 0 0

For this (𝑁𝑟 + 2)× (𝑁𝑐 + 2) lattice case, here is our (row, col) indexing scheme.

(-1, 3) (0, 3) (1, 3) (2, 3) (3, 3)
(-1, 2) (0, 2) (1, 2) (2, 2) (3, 2)
(-1, 1) (0, 1) (1, 1) (2, 1) (3, 1)
(-1, 0) (0, 0) (1, 0) (2, 0) (3, 0)
(-1, -1) (0, -1) (1, -1) (2, -1) (3, -1)

Notably [0, 𝑁𝑟) × [0, 𝑁𝑐) corresponds to the interior index range over which we apply the stencil, and [−1, 𝑁𝑟] ×
[−1, 𝑁𝑐] is the full lattice index range.

RAJA Offset Layouts

We use the RAJA::make_offset_layout method to construct a RAJA::OffsetLayout object that defines
our two-dimensional indexing scheme. Then, we create two RAJA::View objects for each of the input and output
lattice arrays.

const int DIM = 2;

RAJA::OffsetLayout<DIM> layout =
RAJA::make_offset_layout<DIM>({{-1, -1}}, {{N_r+1, N_c+1}});

RAJA::View<int, RAJA::OffsetLayout<DIM>> inputView(input, layout);
RAJA::View<int, RAJA::OffsetLayout<DIM>> outputView(output, layout);

Here, the row index range is [−1, 𝑁𝑟], and the column index range is [−1, 𝑁𝑐]. The first argument to each call to the
RAJA::View constructor is a pointer to an array that holds the data for the view; we assume the arrays are properly
allocated before these calls.

6.1. RAJA User Guide 117

RAJA Documentation, Release 2022.03.1

The offset layout mechanics of RAJA allow us to write loops over data arrays using non-zero based indexing and
without having to manually compute the proper offsets into the arrays. For more details on the RAJA::View and
RAJA::Layout concepts we use in this example, please refer to View and Layout.

RAJA Kernel Implementation

For the RAJA implementations of the example computation, we use two RAJA::RangeSegment objects to define
the row and column iteration spaces for the interior cells:

RAJA::RangeSegment col_range(0, N_r);
RAJA::RangeSegment row_range(0, N_c);

Here, is an implementation using RAJA::kernel multi-dimensional loop execution with a sequential execution
policy.

using NESTED_EXEC_POL1 =
RAJA::KernelPolicy<

RAJA::statement::For<1, RAJA::seq_exec, // row
RAJA::statement::For<0, RAJA::seq_exec, // col
RAJA::statement::Lambda<0>

>
>

>;

RAJA::kernel<NESTED_EXEC_POL1>(RAJA::make_tuple(col_range, row_range),
[=](int col, int row) {

outputView(row, col) =
inputView(row, col)
+ inputView(row - 1, col)
+ inputView(row + 1, col)
+ inputView(row, col - 1)
+ inputView(row, col + 1);

});

Since the stencil operation is data parallel, any parallel execution policy may be used. The file RAJA/examples/
tut_offset-layout.cpp contains a complete working example code with various parallel implementations. For
more information about using the RAJA::kernel interface, please see Complex Loops (RAJA::kernel).

Tiled Matrix Transpose

Key RAJA features shown in this example are:

• RAJA::kernel usage with multiple lambdas

• RAJA::statement::Tile type

In this example, we compute the transpose of an input matrix 𝐴 of size 𝑁𝑟×𝑁𝑐 and store the result in a second matrix
𝐴𝑡 of size 𝑁𝑐 ×𝑁𝑟.

We compute the matrix transpose using a tiling algorithm, which iterates over tiles of the matrix A and performs a
transpose copy of a tile without storing the tile in another array. The algorithm is expressed as a collection of outer
and inner loops. Iterations of the inner loop will transpose each tile, while outer loops iterate over the tiles.

We start with a non-RAJA C++ implementation, where we choose tile dimensions smaller than the matrix dimensions.
Note that we do not assume that tiles divide evenly the number of rows and and columns of the matrix. However, we
do assume square tiles. First, we define matrix dimensions:

118 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

const int N_r = 56;
const int N_c = 75;

const int TILE_DIM = 16;

const int outer_Dimc = (N_c - 1) / TILE_DIM + 1;
const int outer_Dimr = (N_r - 1) / TILE_DIM + 1;

Then, we wrap the matrix data pointers in RAJA::View objects to simplify the multi-dimensional indexing:

RAJA::View<int, RAJA::Layout<DIM>> Aview(A, N_r, N_c);
RAJA::View<int, RAJA::Layout<DIM>> Atview(At, N_c, N_r);

Then, the non-RAJA C++ implementation looks like this:

//
// (0) Outer loops to iterate over tiles
//
for (int by = 0; by < outer_Dimr; ++by) {
for (int bx = 0; bx < outer_Dimc; ++bx) {

//
// (1) Loops to iterate over tile entries
//
for (int ty = 0; ty < TILE_DIM; ++ty) {
for (int tx = 0; tx < TILE_DIM; ++tx) {

int col = bx * TILE_DIM + tx; // Matrix column index
int row = by * TILE_DIM + ty; // Matrix row index

// Bounds check
if (row < N_r && col < N_c) {
Atview(col, row) = Aview(row, col);

}
}

}

}
}

Note that we need to include a bounds check in the code to avoid indexing out of bounds when the tile sizes do not
divide the matrix dimensions evenly.

RAJA::kernel Variants

For RAJA::kernel variants, we use RAJA::statement::Tile types for the outer loop tiling and
RAJA::tile_fixed types to indicate the tile dimensions. The complete sequential RAJA variant is:

using KERNEL_EXEC_POL =
RAJA::KernelPolicy<

RAJA::statement::Tile<1, RAJA::tile_fixed<TILE_DIM>, RAJA::seq_exec,
RAJA::statement::Tile<0, RAJA::tile_fixed<TILE_DIM>, RAJA::seq_exec,
RAJA::statement::For<1, RAJA::seq_exec,
RAJA::statement::For<0, RAJA::seq_exec,
RAJA::statement::Lambda<0>

>
>

(continues on next page)

6.1. RAJA User Guide 119

RAJA Documentation, Release 2022.03.1

(continued from previous page)

>
>

>;

RAJA::kernel<KERNEL_EXEC_POL>(RAJA::make_tuple(col_Range, row_Range),
[=](int col, int row) {

Atview(col, row) = Aview(row, col);
});

The RAJA::statement::Tile types compute the number of tiles needed to iterate over all matrix entries in
each dimension and generate iteration index bounds for each tile, which are used to generate loops for the inner
RAJA::statement::For types. Thus, the bounds checking logic in the non-RAJA variant is not needed. Note
that the integer template parameters to these statement types refer to the entries in the iteration space tuple passed to
the RAJA::kernel method.

The file RAJA/examples/tut_tiled-matrix-transpose.cpp contains the complete working example
code for the examples described in this section, including OpenMP, CUDA, and HIP variants.

A more advanced version using RAJA local arrays for CPU cache blocking and using GPU shared memory is discussed
in Matrix Transpose with Local Array.

Matrix Transpose with Local Array

This section extends the discussion in Tiled Matrix Transpose, where only loop tiling is considered. Here, we
combine loop tiling with RAJA::LocalArray objects which enable us to store data for each tile in CPU stack-
allocated arrays or GPU thread local and shared memory to be used within kernels. For more information about
RAJA::LocalArray, please see Local Array.

Key RAJA features shown in this example include:

• RAJA::kernel_param method with multiple lambda expressions

• RAJA::statement::Tile type

• RAJA::statement::ForICount type

• RAJA::LocalArray

• Specifying lambda arguments through statements

As in Tiled Matrix Transpose, this example computes the transpose of an input matrix 𝐴 of size 𝑁𝑟 × 𝑁𝑐 and stores
the result in a second matrix 𝐴𝑡 of size 𝑁𝑐 ×𝑁𝑟. The operation uses a local memory tiling algorithm. The algorithm
tiles the outer loops and iterates over tiles in inner loops. The algorithm first loads input matrix entries into a local
two-dimensional array for a tile, and then reads from the tile swapping the row and column indices to generate the
output matrix.

We start with a non-RAJA C++ implementation to show the algorithm pattern. We choose tile dimensions smaller
than the dimensions of the matrix and note that it is not necessary for the tile dimensions to divide evenly the number
of rows and columns in the matrix A. As in the Tiled Matrix Transpose example, we start by defining the number of
rows and columns in the matrices, the tile dimensions, and the number of tiles.

const int N_r = 267;
const int N_c = 251;

const int TILE_DIM = 16;

const int outer_Dimc = (N_c - 1) / TILE_DIM + 1;
const int outer_Dimr = (N_r - 1) / TILE_DIM + 1;

120 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

We also use RAJA View objects to simplify the multi-dimensional indexing as in the Tiled Matrix Transpose example.

RAJA::View<int, RAJA::Layout<DIM>> Aview(A, N_r, N_c);
RAJA::View<int, RAJA::Layout<DIM>> Atview(At, N_c, N_r);

The complete sequential C++ implementation of the tiled transpose operation using a stack-allocated local array for
the tiles is:

//
// (0) Outer loops to iterate over tiles
//
for (int by = 0; by < outer_Dimr; ++by) {
for (int bx = 0; bx < outer_Dimc; ++bx) {

// Stack-allocated local array for data on a tile
int Tile[TILE_DIM][TILE_DIM];

//
// (1) Inner loops to read input matrix tile data into the array
//
// Note: loops are ordered so that input matrix data access
// is stride-1.
//
for (int ty = 0; ty < TILE_DIM; ++ty) {
for (int tx = 0; tx < TILE_DIM; ++tx) {

int col = bx * TILE_DIM + tx; // Matrix column index
int row = by * TILE_DIM + ty; // Matrix row index

// Bounds check
if (row < N_r && col < N_c) {
Tile[ty][tx] = Aview(row, col);

}
}

}

//
// (2) Inner loops to write array data into output array tile
//
// Note: loop order is swapped from above so that output matrix
// data access is stride-1.
//
for (int tx = 0; tx < TILE_DIM; ++tx) {
for (int ty = 0; ty < TILE_DIM; ++ty) {

int col = bx * TILE_DIM + tx; // Matrix column index
int row = by * TILE_DIM + ty; // Matrix row index

// Bounds check
if (row < N_r && col < N_c) {
Atview(col, row) = Tile[ty][tx];

}
}

}

}
}

6.1. RAJA User Guide 121

RAJA Documentation, Release 2022.03.1

Note:

• To prevent indexing out of bounds, when the tile dimensions do not divide evenly the matrix dimensions, we
use a bounds check in the inner loops.

• For efficiency, we order the inner loops so that reading from the input matrix and writing to the output matrix
both use stride-1 data access.

RAJA::kernel Version of Tiled Loops with Local Array

RAJA provides mechanisms to tile loops and use local arrays in kernels so that algorithm patterns like we just de-
scribed can be implemented with RAJA. A RAJA::LocalArray type specifies an object whose memory is created
inside a kernel using a RAJA::statement type in a RAJA kernel execution policy. The local array data is only
usable within the kernel. See Local Array for more information.

RAJA::kernel methods also support loop tiling statements which determine the number of tiles needed to perform
an operation based on tile size and extent of the corresponding iteration space. Moreover, lambda expressions for the
kernel will not be invoked for iterations outside the bounds of an iteration space when tile dimensions do not divide
evenly the size of the iteration space; thus, no conditional checks on loop bounds are needed inside inner loops.

For the RAJA version of the matrix transpose kernel above, we define the type of the RAJA::LocalArray used for
matrix entries in a tile and create an object to represent it:

using TILE_MEM =
RAJA::LocalArray<int, RAJA::Perm<0, 1>, RAJA::SizeList<TILE_DIM, TILE_DIM>>;

TILE_MEM Tile_Array;

The template parameters that define the type are: array data type, data stride permutation for the array indices (here the
identity permutation is given, so the default RAJA conventions apply; i.e., the rightmost array index will be stride-1),
and the array dimensions. Next, we compare two RAJA implementations of matrix transpose with RAJA.

The complete RAJA sequential CPU variant with kernel execution policy and kernel is:

using SEQ_EXEC_POL_I =
RAJA::KernelPolicy<

RAJA::statement::Tile<1, RAJA::tile_fixed<TILE_DIM>, RAJA::loop_exec,
RAJA::statement::Tile<0, RAJA::tile_fixed<TILE_DIM>, RAJA::loop_exec,

RAJA::statement::InitLocalMem<RAJA::cpu_tile_mem, RAJA::ParamList<2>,

RAJA::statement::ForICount<1, RAJA::statement::Param<0>, RAJA::loop_exec,
RAJA::statement::ForICount<0, RAJA::statement::Param<1>, RAJA::loop_exec,
RAJA::statement::Lambda<0>

>
>,

RAJA::statement::ForICount<0, RAJA::statement::Param<1>, RAJA::loop_exec,
RAJA::statement::ForICount<1, RAJA::statement::Param<0>, RAJA::loop_exec,
RAJA::statement::Lambda<1>

>
>

>
>

>

(continues on next page)

122 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

>;

RAJA::kernel_param<SEQ_EXEC_POL_I>(RAJA::make_tuple(RAJA::RangeSegment(0, N_c),
RAJA::RangeSegment(0, N_r)),

RAJA::make_tuple((int)0, (int)0, Tile_Array),

[=](int col, int row, int tx, int ty, TILE_MEM &Tile_Array) {
Tile_Array(ty, tx) = Aview(row, col);

},

[=](int col, int row, int tx, int ty, TILE_MEM &Tile_Array) {
Atview(col, row) = Tile_Array(ty, tx);

});

The RAJA::statement::Tile types in the execution policy define tiling of the outer ‘row’ (iteration space tuple
index ‘1’) and ‘col’ (iteration space tuple index ‘0’) loops, including tile sizes (RAJA::tile_fixed types) and
loop execution policies. Next, the RAJA::statement::InitLocalMem type initializes the local stack array
based on the memory policy type (here, we use RAJA::cpu_tile_mem for a CPU stack-allocated array). The
RAJA::ParamList<2> parameter indicates that the local array object is associated with position ‘2’ in the pa-
rameter tuple argument passed to the RAJA::kernel_param method. The first two entries in the parameter tuple
indicate storage for the local tile indices which can be used in multiple lambdas in the kernel. Finally, we have two
sets of nested inner loops for reading the input matrix entries into the local array and writing them out to the output
matrix transpose. The inner bodies of each of these loop nests are identified by lambda expression arguments ‘0’ and
‘1’, respectively.

Note that the loops over tiles use RAJA::statement::ForICount types rather than
RAJA::statement::For types that we have seen in other nested loop examples. The
RAJA::statement::ForICount type generates local tile indices that are passed to lambda loop body expres-
sions. As the reader will observe, there is no local tile index computation needed in the lambdas for the RAJA version
of the kernel as a result. The first integer template parameter for each RAJA::statement::ForICount
type indicates the item in the iteration space tuple passed to the RAJA::kernel_param method to
which it applies; this is similar to RAJA::statement::For usage. The second template parameter for
each RAJA::statement::ForICount type indicates the position in the parameter tuple passed to the
RAJA::kernel_param method that will hold the associated local tile index. The loop execution policy template
argument that follows works the same as in RAJA::statement::For usage. For more detailed discussion of
RAJA loop tiling statement types, please see Loop Tiling.

Now that we have described the execution policy in some detail, let’s pull everything together by briefly walking though
the call to the RAJA::kernel_param method. The first argument is a tuple of iteration spaces that define the itera-
tion ranges for the level in the loop nest. Again, the first integer parameters given to the RAJA::statement::Tile
and RAJA::statement::ForICount types identify the tuple entry they apply to. The second argument is a tu-
ple of data parameters that will hold the local tile indices and RAJA::LocalArray tile memory. The tuple entries
are associated with various statements in the execution policy as we described earlier. Next, two lambda expression
arguments are passed to the RAJA::kernel_param method for reading and writing the input and output matrix
entries, respectively.

Note that each lambda expression takes five arguments. The first two are the matrix column and row indices associated
with the iteration space tuple. The next three arguments correspond to the parameter tuple entries. The first two of
these are the local tile indices used to access entries in the RAJA::LocalArray object memory. The last argument
is a reference to the RAJA::LocalArray object itself.

6.1. RAJA User Guide 123

RAJA Documentation, Release 2022.03.1

RAJA::kernel Version of Tiled Loops with Local Array Specifying Lambda Arguments

The second RAJA variant works the same as the one above. The main differences between the two variants is due
to the fact that in this second one, we use RAJA::statement::Lambda types to indicate which arguments each
lambda takes and in which order. Here is the complete version including execution policy and kernel:

using SEQ_EXEC_POL_II =
RAJA::KernelPolicy<

RAJA::statement::Tile<1, RAJA::tile_fixed<TILE_DIM>, RAJA::loop_exec,
RAJA::statement::Tile<0, RAJA::tile_fixed<TILE_DIM>, RAJA::loop_exec,

RAJA::statement::InitLocalMem<RAJA::cpu_tile_mem, RAJA::ParamList<0>,

RAJA::statement::For<1, RAJA::loop_exec,
RAJA::statement::For<0, RAJA::loop_exec,
RAJA::statement::Lambda<0, Segs<0>, Segs<1>, Offsets<0>, Offsets<1>,

→˓Params<0> >
>

>,

RAJA::statement::For<0, RAJA::loop_exec,
RAJA::statement::For<1, RAJA::loop_exec,
RAJA::statement::Lambda<1, Segs<0, 1>, Offsets<0, 1>, Params<0> >

>
>

>
>

>
>;

RAJA::kernel_param<SEQ_EXEC_POL_II>(RAJA::make_tuple(RAJA::RangeSegment(0, N_c),
RAJA::RangeSegment(0, N_r)),

RAJA::make_tuple(Tile_Array),

[=](int col, int row, int tx, int ty, TILE_MEM &Tile_Array) {
Tile_Array(ty, tx) = Aview(row, col);

},

[=](int col, int row, int tx, int ty, TILE_MEM &Tile_Array) {
Atview(col, row) = Tile_Array(ty, tx);

});

Here, the two RAJA::statement::Lambda types in the execution policy show two different ways to specify the
segments (RAJA::Segs) associated with the matrix column and row indices. That is, we can use a Segs statement
for each argument, or include multiple segment ids in one statement.

Note that we are using RAJA::statement::For types for the inner tile loops instead of
RAJA::statement::ForICount‘ types used in the first variant. As a consequence of specifying lambda arguments, there
are two main differences. The local tile indices are properly computed and passed to the lambda expressions as a result
of the RAJA::Offsets types that appear in the lambda statement types. The RAJA::statement::Lambda
type for each lambda shows the two ways to specify the local tile index args; we can use an Offsets statement for
each argument, or include multiple segment ids in one statement. Lastly, there is only one entry in the parameter tuple
in this case, the local tile array. The placeholders are not needed.

The file RAJA/examples/tut_matrix-transpose-local-array.cpp contains the complete working ex-

124 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

ample code for the examples described in this section along with OpenMP, CUDA, and HIP variants.

Halo Exchange (Workgroup Constructs)

Key RAJA features shown in this example:

• RAJA::WorkPool workgroup construct

• RAJA::WorkGroup workgroup construct

• RAJA::WorkSite workgroup construct

• RAJA::RangeSegment iteration space construct

• RAJA workgroup policies

In this example, we show how to use the RAJA workgroup constructs to implement buffer packing and unpacking
for data halo exchange on a computational grid, a common MPI communication operation. This may not provide a
performance gain on a CPU system, but it can significantly speedup halo exchange on a GPU system compared to
using RAJA::forall to run individual packing/unpacking kernels.

Note: Using an abstraction layer over RAJA can make it easy to switch between using individual RAJA::forall
loops or the RAJA workgroup constructs to implement halo exchange packing and unpacking at compile time or run
time.

We start by setting the parameters for the halo exchange by using default values or values provided via command line
input. These parameters determine the size of the grid, the width of the halo, the number of grid variables and the
number of cycles.

//
// Define grid dimensions
// Define halo width
// Define number of grid variables
// Define number of cycles
//
const int grid_dims[3] = { (argc != 7) ? 100 : std::atoi(argv[1]),

(argc != 7) ? 100 : std::atoi(argv[2]),
(argc != 7) ? 100 : std::atoi(argv[3]) };

const int halo_width = (argc != 7) ? 1 : std::atoi(argv[4]);
const int num_vars = (argc != 7) ? 3 : std::atoi(argv[5]);
const int num_cycles = (argc != 7) ? 3 : std::atoi(argv[6]);

Next, we allocate the variables array (the memory manager in the example uses CUDA Unified Memory if CUDA is
enabled). These grid variables are reset each cycle to allow checking the results of the packing and unpacking.

//
// Allocate grid variables and reference grid variables used to check
// correctness.
//
std::vector<double*> vars (num_vars, nullptr);
std::vector<double*> vars_ref(num_vars, nullptr);

for (int v = 0; v < num_vars; ++v) {
vars[v] = memoryManager::allocate<double>(var_size);
vars_ref[v] = memoryManager::allocate<double>(var_size);

}

6.1. RAJA User Guide 125

RAJA Documentation, Release 2022.03.1

We also allocate and initialize index lists of the grid elements to pack and unpack:

All the code examples presented below copy the data packed from the grid interior:

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

into the adjacent halo cells:

1 1 2 3 3
1 1 2 3 3
4 4 5 6 6
7 7 8 9 9
7 7 8 9 9

Packing and Unpacking (Basic Loop Execution)

A sequential non-RAJA example of packing:

for (int l = 0; l < num_neighbors; ++l) {

double* buffer = buffers[l];
int* list = pack_index_lists[l];
int len = pack_index_list_lengths[l];

// pack
for (int v = 0; v < num_vars; ++v) {

double* var = vars[v];

for (int i = 0; i < len; i++) {
buffer[i] = var[list[i]];

}

buffer += len;
}

// send single message
}

and unpacking:

for (int l = 0; l < num_neighbors; ++l) {

// recv single message

double* buffer = buffers[l];
int* list = unpack_index_lists[l];
int len = unpack_index_list_lengths[l];

// unpack

(continues on next page)

126 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

for (int v = 0; v < num_vars; ++v) {

double* var = vars[v];

for (int i = 0; i < len; i++) {
var[list[i]] = buffer[i];

}

buffer += len;
}

}

RAJA Variants using forall

A sequential RAJA example uses this execution policy type:

using forall_policy = RAJA::loop_exec;

to pack the grid variable data into a buffer:

for (int l = 0; l < num_neighbors; ++l) {

double* buffer = buffers[l];
int* list = pack_index_lists[l];
int len = pack_index_list_lengths[l];

// pack
for (int v = 0; v < num_vars; ++v) {

double* var = vars[v];

RAJA::forall<forall_policy>(range_segment(0, len), [=] (int i) {
buffer[i] = var[list[i]];

});

buffer += len;
}

// send single message
}

and unpack the buffer data into the grid variable array:

for (int l = 0; l < num_neighbors; ++l) {

// recv single message

double* buffer = buffers[l];
int* list = unpack_index_lists[l];
int len = unpack_index_list_lengths[l];

// unpack
for (int v = 0; v < num_vars; ++v) {

double* var = vars[v];

(continues on next page)

6.1. RAJA User Guide 127

RAJA Documentation, Release 2022.03.1

(continued from previous page)

RAJA::forall<forall_policy>(range_segment(0, len), [=] (int i) {
var[list[i]] = buffer[i];

});

buffer += len;
}

}

For parallel multi-threading execution via OpenMP, the example can be run by replacing the execution policy with:

using forall_policy = RAJA::omp_parallel_for_exec;

Similarly, to run the loops in parallel on a CUDA GPU, we would use this policy:

using forall_policy = RAJA::cuda_exec_async<CUDA_BLOCK_SIZE>;

RAJA Variants using workgroup constructs

Using the workgroup constructs in the example requires defining a few more policies and types:

using forall_policy = RAJA::loop_exec;

using workgroup_policy = RAJA::WorkGroupPolicy <
RAJA::loop_work,
RAJA::ordered,
RAJA::ragged_array_of_objects >;

using workpool = RAJA::WorkPool< workgroup_policy,
int,
RAJA::xargs<>,
memory_manager_allocator<char> >;

using workgroup = RAJA::WorkGroup< workgroup_policy,
int,
RAJA::xargs<>,
memory_manager_allocator<char> >;

using worksite = RAJA::WorkSite< workgroup_policy,
int,
RAJA::xargs<>,
memory_manager_allocator<char> >;

which are used in a slightly rearranged version of packing. See how the comment indicating where a message could
be sent has been moved down after the call to run on the workgroup:

for (int l = 0; l < num_neighbors; ++l) {

double* buffer = buffers[l];
int* list = pack_index_lists[l];
int len = pack_index_list_lengths[l];

// pack
for (int v = 0; v < num_vars; ++v) {

(continues on next page)

128 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

double* var = vars[v];

pool_pack.enqueue(range_segment(0, len), [=] (int i) {
buffer[i] = var[list[i]];

});

buffer += len;
}

}

workgroup group_pack = pool_pack.instantiate();

worksite site_pack = group_pack.run();

// send all messages

Similarly, in the unpacking we wait to receive all of the messages before unpacking the data:

// recv all messages

for (int l = 0; l < num_neighbors; ++l) {

double* buffer = buffers[l];
int* list = unpack_index_lists[l];
int len = unpack_index_list_lengths[l];

// unpack
for (int v = 0; v < num_vars; ++v) {

double* var = vars[v];

pool_unpack.enqueue(range_segment(0, len), [=] (int i) {
var[list[i]] = buffer[i];

});

buffer += len;
}

}

workgroup group_unpack = pool_unpack.instantiate();

worksite site_unpack = group_unpack.run();

This reorganization has the downside of not overlapping the message sends with packing and the message receives
with unpacking.

For parallel multi-threading execution via OpenMP, the example using workgroup can be run by replacing the policies
and types with:

using forall_policy = RAJA::omp_parallel_for_exec;

using workgroup_policy = RAJA::WorkGroupPolicy <
RAJA::omp_work,
RAJA::ordered,
RAJA::ragged_array_of_objects >;

using workpool = RAJA::WorkPool< workgroup_policy,
(continues on next page)

6.1. RAJA User Guide 129

RAJA Documentation, Release 2022.03.1

(continued from previous page)

int,
RAJA::xargs<>,
memory_manager_allocator<char> >;

using workgroup = RAJA::WorkGroup< workgroup_policy,
int,
RAJA::xargs<>,
memory_manager_allocator<char> >;

using worksite = RAJA::WorkSite< workgroup_policy,
int,
RAJA::xargs<>,
memory_manager_allocator<char> >;

Similarly, to run the loops in parallel on a CUDA GPU use these policies and types, taking note of the unordered work
ordering policy that allows the enqueued loops to all be run using a single CUDA kernel:

using forall_policy = RAJA::cuda_exec_async<CUDA_BLOCK_SIZE>;

using workgroup_policy = RAJA::WorkGroupPolicy <
RAJA::cuda_work_async<CUDA_WORKGROUP_BLOCK_SIZE>,
RAJA::unordered_cuda_loop_y_block_iter_x_threadblock_

→˓average,
RAJA::constant_stride_array_of_objects >;

using workpool = RAJA::WorkPool< workgroup_policy,
int,
RAJA::xargs<>,
pinned_allocator<char> >;

using workgroup = RAJA::WorkGroup< workgroup_policy,
int,
RAJA::xargs<>,
pinned_allocator<char> >;

using worksite = RAJA::WorkSite< workgroup_policy,
int,
RAJA::xargs<>,
pinned_allocator<char> >;

The packing is the same as the previous workgroup packing examples with the exception of added synchro-
nization after calling run and before sending the messages. The previous CUDA example used forall to launch
num_neighbors * num_vars CUDA kernels and performed num_neighbors synchronizations to send each
message in turn. Here, the reorganization to pack all messages before sending lets us use an unordered CUDA work
ordering policy in the workgroup constructs that reduces the number of CUDA kernel launches to one. It also allows
us to synchronize once before sending all of the messages:

for (int l = 0; l < num_neighbors; ++l) {

double* buffer = buffers[l];
int* list = pack_index_lists[l];
int len = pack_index_list_lengths[l];

// pack
for (int v = 0; v < num_vars; ++v) {

(continues on next page)

130 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

double* var = vars[v];

pool_pack.enqueue(range_segment(0, len), [=] RAJA_DEVICE (int i) {
buffer[i] = var[list[i]];

});

buffer += len;
}

}

workgroup group_pack = pool_pack.instantiate();

worksite site_pack = group_pack.run();

cudaErrchk(cudaDeviceSynchronize());

// send all messages

After waiting to receive all of the messages we use workgroup constructs using a CUDA unordered work ordering
policy to unpack all of the messages using a single kernel launch:

// recv all messages

for (int l = 0; l < num_neighbors; ++l) {

double* buffer = buffers[l];
int* list = unpack_index_lists[l];
int len = unpack_index_list_lengths[l];

// unpack
for (int v = 0; v < num_vars; ++v) {

double* var = vars[v];

pool_unpack.enqueue(range_segment(0, len), [=] RAJA_DEVICE (int i) {
var[list[i]] = buffer[i];

});

buffer += len;
}

}

workgroup group_unpack = pool_unpack.instantiate();

worksite site_unpack = group_unpack.run();

cudaErrchk(cudaDeviceSynchronize());

Note that the synchronization after unpacking is done to ensure that group_unpack and site_unpack survive
until the unpacking loop has finished executing.

The file RAJA/examples/tut_halo-exchange.cpp contains a complete working example code, with
OpenMP, CUDA, and HIP variants.

6.1. RAJA User Guide 131

RAJA Documentation, Release 2022.03.1

Team based Loops: Nested loops with a thread/team model

The examples in this section illustrate how to use RAJA::expt::launch to create an run-time selectable execution
space for expressing algorithms in terms of threads and teams.

Team based loops (RAJA Teams)

Key RAJA features shown in the following examples:

• RAJA::expt::launch method to create a run-time selectable host/device execution space.

• RAJA::expt::loop methods to express algorithms in terms of nested for loops.

In this example, we introduce the RAJA Teams framework and discuss hierarchical loop-based parallelism. De-
velopment with RAJA Teams occurs inside an execution space. The execution space is launched using the
RAJA::expt::launch method:

RAJA::expt::launch<launch_policy>(RAJA::expt::ExecPlace ,
RAJA::expt::Grid(RAJA::expt::Teams(Nteams,Nteams),

RAJA::expt::Threads(Nthreads,Nthreads)),
[=] RAJA_HOST_DEVICE (RAJA::expt::LaunchContext ctx) {

/* Express code here */

});

The RAJA::expt::launch method is templated on both a host and a device launch policy. As an example, the
following constructs an execution space for a sequential and CUDA kernel:

using launch_policy = RAJA::expt::LaunchPolicy
<RAJA::expt::seq_launch_t, RAJA::expt::cuda_launch_t<false>>;

Kernel execution on either the host or device is driven by the first argument of the method which takes a
RAJA::expt::ExecPlace enum type, either HOST or DEVICE. Similar to thread, and block program-
ming models, RAJA Teams carries out computation in a predefined compute grid made up of threads which
are then grouped into teams. The execution space is then enclosed by a host/device lambda which takes a
RAJA::expt::LaunchContext object. The RAJA::expt::LaunchContext may then be used to control
the flow within the kernel, for example creating thread-team synchronization points.

Inside the execution space the RAJA::expt::loop methods enable developers to express their code in terms of
nested loops. The manner in which the loops are executed depends on the template. Following the CUDA/HIP
programming models we follow a hierarchical structure in which outer loops are executed by thread-teams and inner
loops are executed by a thread in a team.

RAJA::expt::loop<teams_y>(ctx, RAJA::RangeSegment(0, Nteams), [&] (int by) {
RAJA::expt::loop<teams_x>(ctx, RAJA::RangeSegment(0, Nteams), [&] (int bx) {

RAJA::expt::loop<threads_y>(ctx, RAJA::RangeSegment(0, Nthreads), [&] (int ty)
→˓{

RAJA::expt::loop<threads_x>(ctx, RAJA::RangeSegment(0, Nthreads), [&] (int
→˓tx) {

printf("RAJA Teams: threadId_x %d threadId_y %d teamId_x %d teamId_y %d
→˓\n",

tx, ty, bx, by);

});
(continues on next page)

132 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

(continued from previous page)

});

});
});

The mapping between the thread and teams to programming model depends on how they are defined. For example,
we may define host and device mapping strategies as the following:

using teams_x = RAJA::expt::LoopPolicy<RAJA::loop_exec,
RAJA::cuda_block_x_direct>;

using thread_x = RAJA::expt::LoopPolicy<RAJA::loop_exec,
RAJA::cuda_block_x_direct>;

In the example above the RAJA::expt::LoopPolicy struct holds both the host and device loop mapping strate-
gies. On the host, both the team/thread strategies expand out to standard C-style loops for execution:

for(int by=0; by<Nteams; ++by) {
for(int bx=0; bx<Nteams; ++bx) {

for(int ty=0; ty<Nthreads; ++ty) {
for(int tx=0; tx<Nthreads; ++tx) {

printf("c-iter: iter_tx %d iter_ty %d iter_bx %d iter_by %d \n",
tx, ty, bx, by);

}
}

}
}

On the device the teams_x/y policies will map loop iterations directly to CUDA thread blocks, while the
thread_x/y policies will map loop iterations directly to threads in a CUDA block. The CUDA equivalent is il-
lustrated below:

{int by = blockIdx.y;
{int bx = blockIdx.x;

{int ty = threadIdx.y;
{int tx = blockIdx.x;

printf("device-iter: threadIdx_tx %d threadIdx_ty %d block_bx %d block_by
→˓%d \n",

tx, ty, bx, by);

}
}

}
}

The file RAJA/examples/tut_teams_basic.cpp contains the complete working example code.

Naming kernels with NVTX/ROCTX tools

Key RAJA feature shown in the following example:

6.1. RAJA User Guide 133

RAJA Documentation, Release 2022.03.1

• Naming kernels using the Grid object in RAJA::ext::Launch methods.

In this example we illustrate kernel naming capabilities within the RAJA Teams framework for use with NVTX or
ROCTX region naming capabilities.

Recalling the RAJA::expt::launch API, naming a kernel is done using the third argument of the Resources
constructor as illustrated below:

RAJA::expt::launch<launch_policy>(RAJA::expt::ExecPlace ,
RAJA::expt::Grid(RAJA::expt::Teams(Nteams,Nteams),

RAJA::expt::Threads(Nthreads,Nthreads)
"myKernel"),

[=] RAJA_HOST_DEVICE (RAJA::expt::LaunchContext ctx) {

/* Express code here */

});

The kernel name is used to create NVTX (NVIDIA) or ROCTX (AMD) ranges enabling developers to identify kernels
using NVIDIA Nsight and NVIDIA Nvprof profiling tools or ROCm profiling tools when using ROCTX. As an
illustration, using Nvprof kernels are identified as ranges of GPU activity through the user specified name:

==73220== NVTX result:
==73220== Thread "<unnamed>" (id = 290832)
==73220== Domain "<unnamed>"
==73220== Range "myKernel"

Type Time(%) Time Calls Avg Min Max Name
Range: 100.00% 32.868us 1 32.868us 32.868us 32.868us

→˓myKernel
GPU activities: 100.00% 2.0307ms 1 2.0307ms 2.0307ms 2.0307ms _

→˓ZN4RAJA4expt17launch_global_fcnIZ4mainEUlNS0_13LaunchContextEE_EEvS2_T_
API calls: 100.00% 27.030us 1 27.030us 27.030us 27.030us

→˓cudaLaunchKernel

In a similar fashion ROCm tools can be used to generate traces of the profile and the resulting json file can be viewed
using tools such as perfetto.

As future work we plan to add support to other profiling tools; API changes may occur based on user feedback
and integration with other tools. Enabling NVTX profiling with RAJA Teams requires RAJA to be configured with
RAJA_ENABLE_NV_TOOLS_EXT=ON. or RAJA_ENABLE_ROCTX=ON for ROCTX profiling on AMD plat-
forms platforms.

The file RAJA/examples/teams_reductions.cpp contains a complete working example code.

6.1.5 Using RAJA in Your Application

Using RAJA in an application requires two things: ensuring the RAJA header files are visible, and linking against the
RAJA library. We maintain a RAJA Template Project that shows how to use RAJA in a project that uses CMake or
make, either as a Git submodule or as an externally installed library that you link your application against.

CMake Configuration File

As part of the RAJA installation, we provide a RAJA-config.cmake file. If your application uses CMake, this can
be used with CMake’s find_package capability to import RAJA into your CMake project.

To use the configuration file, you can add the following command to your CMake project:

134 Chapter 6. RAJA Copyright and License Information

https://developer.nvidia.com/nsight-visual-studio-edition
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html
https://ui.perfetto.dev/#!/
https://github.com/LLNL/RAJA-project-template

RAJA Documentation, Release 2022.03.1

find_package(RAJA)

Then, pass the path of RAJA to CMake when you configure your code:

cmake -DRAJA_DIR=<path-to-raja>/share/raja/cmake

The RAJA-config.cmake file provides a RAJA target, that can be used natively by CMake to add a dependency
on RAJA. For example:

add_executable(my-app.exe
my-app.cpp)

target_link_libraries(my-app.exe PUBLIC RAJA)

6.1.6 Build Configuration Options

RAJA uses BLT, a CMake-based build system. In Getting Started With RAJA, we described how to run CMake to
configure RAJA with its default option settings. In this section, we describe RAJA configuration options that are most
useful for users to know about and their defaults.

RAJA Option Types

Nearly all Cmake options used in RAJA contain the prefix RAJA_ to give users flexibility to enable/disable individual
compilation features for RAJA, specifically. RAJA contains two types of options, those that exist in RAJA only
and those that are similar to standard CMake options or options provided by BLT; i.e., dependent options in CMake
terminology. RAJA dependent option names are the same as the associated CMake and BLT option names, but with
the RAJA_ prefix added.

Note: RAJA uses a mix of RAJA-only options and CMake-dependent options that can be controlled with CMake or
BLT variants.

• Dependent options are typically used for disabling features. For example, providing the option
-DRAJA_ENABLE_TESTS=Off to CMake will disable compilation of RAJA tests, even if the option
-DENABLE_TESTS=On is also provided.

• We recommend using the option names without the RAJA_ prefix, when available, to enable features at compile
time to avoid potential undesired behavior. For example, passing the option -DRAJA_ENABLE_CUDA=On to
CMake will not enable CUDA because ENABLE_CUDA is off by default. So to enable CUDA, you need to pass
the -DENABLE_CUDA=On option to Cmake.

Setting Options

The RAJA configuration can be set using standard CMake variables along with BLT and RAJA-specific variables. For
example, to make a release build with some system default GNU compiler and then install the RAJA header files and
libraries in a specific directory location, you could do the following in the top-level RAJA directory:

$ mkdir build-gnu-release
$ cd build-gnu-release
$ cmake \

-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_C_COMPILER=gcc \

(continues on next page)

6.1. RAJA User Guide 135

https://github.com/LLNL/blt

RAJA Documentation, Release 2022.03.1

(continued from previous page)

-DCMAKE_CXX_COMPILER=g++ \
-DCMAKE_INSTALL_PREFIX=../install-gnu-release ../

$ make
$ make install

Following CMake conventions, RAJA supports three build types: Release, RelWithDebInfo, and Debug. With
CMake, compiler flags for each of these build types are applied automatically and so you do not have to specify them.
However, if you want to apply other compiler flags, you will need to do that using appropriate CMake variables.

All RAJA options are set like regular CMake variables. RAJA settings for default options, compilers, flags for opti-
mization, etc. can be found in files in the RAJA/cmake directory and top-level CMakeLists.txt file. Configu-
ration variables can be set by passing arguments to CMake on the command line when CMake is called, or by setting
options in a CMake cache file and passing that file to CMake using the CMake -C options. For example, to enable
RAJA OpenMP functionality, pass the following argument to CMake:

-DENABLE_OPENMP=On

The RAJA repository contains a collection of CMake cache files (we call them host-config files) that may be used as a
guide for users trying to set their own options. See configopt-raja-hostconfig-label.

Next, we summarize RAJA options and their defaults.

Available RAJA Options and Defaults

RAJA uses a variety of custom variables to control how it is compiled. Many of these are used internally to control
RAJA compilation and do not need to be set by users. Others can be used to enable or disable certain RAJA features.
Most variables get translated to compiler directives and definitions in the RAJA config.hpp file that is gener-
ated when CMake runs. The config.hpp header file is included in other RAJA headers so all options propagate
consistently through the build process for all of the code.

Note: The following discussion indicates which options exist in RAJA only and those which are dependent options.
Dependent options appear in the discussion with parentheses around the ‘RAJA_’ prefix to indicate that the
option name without the prefix can be used and is often preferred.

The following tables describe which variables set RAJA options and and their default settings:

• Examples, tests, warnings, etc.

CMake variables can be used to control whether RAJA tests, examples, tutorial exercises, etc. are built when RAJA is
compiled.

Variable Default
(RAJA_)ENABLE_TESTS On
(RAJA_)ENABLE_EXAMPLES On
(RAJA_)ENABLE_BENCHMARKS Off
(RAJA_)ENABLE_COVERAGE Off (supported for GNU compilers only)
RAJA_ENABLE_EXERCISES On
RAJA_ENABLE_REPRODUCERS Off

RAJA can also be configured to build with compiler warnings reported as errors, which may be useful to make sure
your application builds cleanly:

136 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Variable Default
(RAJA_)ENABLE_WARNINGS_AS_ERRORS Off

RAJA Views/Layouts may be configured to check for out of bounds indexing at runtime:

Variable Default
RAJA_ENABLE_BOUNDS_CHECK Off

Note that RAJA bounds checking is a runtime check and will add considerable execution time overhead. Thus, this
feature should only be used for correctness checking and should be disabled for production builds.

• Programming model back-end support

Variables that control which RAJA programming model back-ends are enabled are as follows (names are descriptive
of what they enable):

Variable Default
(RAJA_)ENABLE_OPENMP On
(RAJA_)ENABLE_CUDA Off
(RAJA_)ENABLE_HIP Off
RAJA_ENABLE_TARGET_OPENMP Off (when on, (RAJA_)ENABLE_OPENMP must also be

on!)
RAJA_ENABLE_TBB Off
RAJA_ENABLE_SYCL Off

Other programming model specific compilation options are also available:

Variable Default
(RAJA_)ENABLE_CLANG_CUDA Off (if on, (RAJA_)ENABLE_CUDA must be

on too!)
RAJA_ENABLE_EXTERNAL_CUB Off
RAJA_ENABLE_NV_TOOLS_EXT Off
CUDA_ARCH sm_35 (based on hardware support)
RAJA_ENABLE_EXTERNAL_ROCPRIM Off
RAJA_ENABLE_ROCTX Off
RAJA_ENABLE_HIP_INDIRECT_FUNCTION_CALLOff (enables device function pointers in HIP

back-end)

Turning the (RAJA_)ENABLE_CLANG_CUDA variable on will build CUDA code with the native support in the
Clang compiler.

The RAJA_ENABLE_EXTERNAL_CUB variable is used to enable use of an external install of the NVIDIA CUB
support library. When Off, the CUB library included in the CUDA toolkit will still be used, if available. Starting
with CUDA 11, CUB is installed as part of the CUDA toolkit and the NVIDIA Thrust library requires that install
of CUB. We recommended projects use the CUB included with the CUDA toolkit for compatibility with Thrust and
applications using Thrust. Users should take note of the CUB install used by RAJA to ensure they use the same include
directories when configuring their applications.

The RAJA_ENABLE_EXTERNAL_ROCPRIM variable is used to enable use of an external install of the AMD
rocPRIM support library. When Off, the rocPRIM library included in the ROCm install will be used, when avail-
able. We recommend projects use the rocPRIM included with the ROCm install when available. Users should take

6.1. RAJA User Guide 137

RAJA Documentation, Release 2022.03.1

note of the rocPRIM install used by RAJA to ensure they use the same include directories when configuring their
applications.

Note: See Getting Started With RAJA for more information about setting other options for RAJA back-ends.

• Data types, sizes, alignment, etc.

RAJA provides type aliases that can be used to parameterize floating point types in applications, which makes it easier
to switch between types.

Note: RAJA data types in this section are provided as a convenience to users if they wish to use them. They are not
used within RAJA implementation code directly.

The following variables are used to set the data type for the type alias RAJA::Real_type:

Variable Default
RAJA_USE_DOUBLE On (type is double)
RAJA_USE_FLOAT Off

Similarly, the RAJA::Complex_type can be enabled to support complex numbers if needed:

Variable Default
RAJA_USE_COMPLEX Off

When turned on, the RAJA::Complex_type is an alias to std::complex<Real_type>.

There are several variables to control the definition of the RAJA floating-point data pointer type RAJA::Real_ptr.
The base data type is always Real_type. When RAJA is compiled for CPU execution only, the defaults are:

Variable Default
RAJA_USE_BARE_PTR Off
RAJA_USE_RESTRICT_PTR On
RAJA_USE_RESTRICT_ALIGNED_PTR Off
RAJA_USE_PTR_CLASS Off

When RAJA is compiled with CUDA enabled, the defaults are:

Variable Default
RAJA_USE_BARE_PTR On
RAJA_USE_RESTRICT_PTR Off
RAJA_USE_RESTRICT_ALIGNED_PTR Off
RAJA_USE_PTR_CLASS Off

The meaning of these variables is:

138 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

Variable Meaning
RAJA_USE_BARE_PTRUse standard C-style pointer
RAJA_USE_RESTRICT_PTRUse C-style pointer with restrict qualifier
RAJA_USE_RESTRICT_ALIGNED_PTRUse C-style pointer with restrict qualifier and alignment attribute (see

RAJA_DATA_ALIGN below)
RAJA_USE_PTR_CLASSUse pointer class with overloaded [] operator that applies restrict and align-

ment intrinsics. This is useful when a compiler does not support attributes in
a typedef.

RAJA internally uses a parameter to define platform-specific constant data alignment. The variable that control this is:

Variable Default
RAJA_DATA_ALIGN 64

This variable is used to specify data alignment used in intrinsics and typedefs in units of bytes.

For details on the options in this section are used, please see the header file RAJA/include/RAJA/util/types.
hpp.

• Timer Options

RAJA provides a simple portable timer class that is used in RAJA example codes to determine execution timing and
can be used in other apps as well. This timer can use any of three internal timers depending on your preferences, and
one should be selected by setting the ‘RAJA_TIMER’ variable.

Variable Values
RAJA_TIMER chrono (default) gettime clock

What these variables mean:

Value Meaning
chrono Use the std::chrono library from the C++ standard library
gettime Use timespec from the C standard library time.h file
clock Use clock_t from time.h

• Other RAJA Features

RAJA contains some features that are used mainly for development or may not be of general interest to RAJA users.
These are turned off be default. They are described here for reference and completeness.

Variable Meaning
RAJA_ENABLE_FT Enable/disable RAJA experimental loop-level fault-tolerance mechanism
RAJA_REPORT_FT Enable/disable a report of fault- tolerance enabled run (e.g., number of

faults detected, recovered from, recovery overhead, etc.)
RAJA_ENABLE_RUNTIME_PLUGINSEnable support for dynamically loaded RAJA plugins.
RAJA_ENABLE_DESUL_ATOMICSReplace RAJA atomic implementations with desul variants at compile-

time.

Setting RAJA Back-End Features

Various ENABLE_* options are listed above for enabling RAJA back-ends, such as OpenMP and CUDA. To access
compiler and hardware optimization features, it may be necessary to pass additional options to CMake. Please see
Getting Started With RAJA for more information.

6.1. RAJA User Guide 139

RAJA Documentation, Release 2022.03.1

6.2 Doxygen

6.3 RAJA Developer Guide

The RAJA Developer Guide is a work-in-progress. . . .

This guide documents key software development processes used by the RAJA project so that they are understood and
uniformly applied by contributors.

6.3.1 Contributing to RAJA

Since RAJA is a collaborative open source software project, we embrace contributions from anyone who wants to add
features or improve its existing capabilities. This section describes basic processes to follow for individuals outside of
the core RAJA team to contribute new features or bugfixes to RAJA. It assumes you are familiar with Git, which we
use for source code version control, and GitHub, which is where our project is hosted.

This section describes development processes, such as:

• Making a fork of the RAJA repository

• Creating a branch for development

• Creating a pull request (PR)

• Tests that your PR must pass before it can be merged into RAJA

Forking RAJA

If you are not a member of the LLNL organization on GitHub and of the core RAJA team of developers, then you
do not have permission to create a branch in the RAJA repository. This is due to the policy adopted by the LLNL
organization on GitHub in which the RAJA project resides. Fortunately, you may still contribute to RAJA by forking
the RAJA repo. Forking creates a copy of the RAJA repository that you own. You can push code changes on that copy
to GitHub and create a pull request in the RAJA project.

Note: A contributor who is not a member of the LLNL GitHub organization and the core team of RAJA developers
cannot create a branch in the RAJA repo. However, anyone can create a fork of the RAJA project and create a pull
request in the RAJA project.

Developing RAJA Code

New features, bugfixes, and other changes are developed on a feature branch. Each such branch should be based
on the RAJA develop branch. For more information on the branch development model used in RAJA, please see
RAJA Branch Development. When you want to make a contribution, first ensure you have an up-to-date copy of the
develop branch locally:

$ git checkout develop
$ git pull origin develop

140 Chapter 6. RAJA Copyright and License Information

https://git-scm.com/
https://github.com/
https://github.com/LLNL/RAJA/fork
https://github.com/LLNL/RAJA/fork

RAJA Documentation, Release 2022.03.1

Developing a Feature

Assuming you are on the develop branch in your local copy of the RAJA repo, and the branch is up-to-date, the first
step toward developing a RAJA feature is to create a new branch on which to perform your development. For example:

$ git checkout -b feature/<name-of-feature>

Proceed to modify your branch by committing changes with reasonably-sized work portions (i.e., atomic commits),
and add tests that will exercise your new code. If you are creating new functionality, please add documentation to
the appropriate section of the RAJA User Guide. The source files for the RAJA documentation are maintained in the
RAJA/docs directory.

After your new code is complete, you’ve tested it, and developed appropriate documentation, you can push your branch
to GitHub and create a PR in the RAJA project. It will be reviewed by members of the RAJA team, who will provide
comments, suggestions, etc. After it is approved and all CI checks pass, your contribution will be merged into the
RAJA repository.

Important: When creating a branch that you intend to be merged into the RAJA repo, please give it a succinct name
that clearly describes the contribution. For example, feature/<name-of-feature> for a new feature, bugfix/<fixed-
issue> for a bugfix, etc.

Developing a Bug Fix

Contributing a bugfix follows the same process as described above. Be sure to indicate in the name of your branch that
it is for a bugfix; for example:

$ git checkout -b bugfix/<fixed-issue>

We recommend that you add a test that reproduces the issue you have found and demonstrates that the issue is resolved.
To verify that you have done this properly, build the code for your branch and then run make test to ensure that
your new test passes.

When you are done, push your branch to GitHub, then create a PR in the RAJA project.

Creating a Pull Request

You can create a pull request (PR) here. GitHub has a good PR guide on PR basics if you want more information.
Ensure that the base branch for your PR is the develop branch of RAJA.

When you create a RAJA PR, you must enter a description of the contents of the PR. We have a PR template for this
purpose for you to fill in. Be sure to add a descriptive title explaining the bug you fixed or the feature you have added
and any other relevant details that will assist the RAJA team in reviewing your contribution.

When a PR is created in RAJA, it will be run through our automated testing processes and be reviewed by RAJA team
members. When the PR passes all tests and it is approved, a member of the RAJA team will merge it.

Note: Before a PR can be merged into RAJA, all CI checks must pass and the PR must be approved by a member of
the core team.

6.3. RAJA Developer Guide 141

https://readthedocs.org/projects/raja/
https://github.com/LLNL/RAJA/compare
https://help.github.com/articles/about-pull-requests/

RAJA Documentation, Release 2022.03.1

Tests

RAJA uses multiple continuous integration (CI) tools to test every pull request. See Continuous Integration (CI)
Testing for more information.

All RAJA tests are in the RAJA/test directory and are split into unit tests and functional tests. Unit tests are intended
to test basic interfaces and features of individual classes, methods, etc. Functional tests are used to test combinations
of RAJA features. We have organized our tests to make it easy to see what is being tested and easy to add new tests.
For example, tests for each programming model back-end are exercised using the same common, parameterized test
code to ensure back-end support is consistent.

Important: Please follow the sub-directory structure and code implementation pattern for existing tests in the RAJA/
test directory when adding or modifying tests.

Testing Pull Requests from Branches in Forked Repositories

Due to LLNL security policies and RAJA project policies, only a PR created by someone on the RAJA core devel-
opment team will be run automatically through all RAJA CI tools. In particular, a PR made from branch on a forked
repository will not trigger Gitlab CI checks. Gitlab CI on internal LLNL platforms will only be run on PRs that are
made from branches in the GitHub RAJA repository. This may change in the future to make it easier to work with PRs
from contributors that are not members of the LLNL organization on GitHub.

Note: RAJA core team members:

To facilitate testing contributions in PRs from forked repositories, we maintain a script to pull a PR branch from a
forked repo into the RAJA repo. First, identify the number of the PR. Then, run the script from the top-level RAJA
directory:

$./scripts/make_local_branch_from_fork_pr -b <PR #>

If successful, this will create a branch in your local copy of the RAJA repo labeled pr-from-fork/<PR #> and
you will be on that local branch in your checkout space. To verify this, you can run the following command after you
run the script:

$ git branch

You will see the new branch in the listing of branches and the branch you are on will be starred.

You can push the new branch to the RAJA repo on GitHub:

$ git push origin <branch-name>

and make a PR for the new branch. It is good practice to reference the original PR in the description of the new PR to
track the original PR discussion and reviews.

All CI checks will be triggered to run on the new PR made in the RAJA repo. When everything passes and the PR is
approved, it may be merged. When it is merged, the original PR from the forked repo will be closed and marked as
merged unless it is referenced elsewhere, such as in a GitHub issue. If this is the case, then the original PR (from the
forked repo) must be closed manually.

142 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

6.3.2 Continuous Integration (CI) Testing

The RAJA project employs multiple tools to run its tests for each GitHub pull request, all of which must pass before
the pull request can be merged. These tools include:

• Azure. This runs builds for Linux, Windows, and MacOS environments using a variety of compilers. While we
do GPU builds for CUDA, HIP, and SYCL on Azure, RAJA tests are run for each non-GPU build.

• Appveyor. This runs builds and tests for a Windows environment for two versions of the Visual Studio compiler.

• Gitlab CI. This runs builds and tests on platforms in the Livermore Computing Collaboration Zone. This is
a recent addition for RAJA and is a work-in-progress to get full coverage of compilers and tests we need to
exercise.

These tools integrate seamlessly with GitHub. They will automatically (re)run RAJA builds and tests as changes are
pushed to each PR branch. Gitlab CI execution on Livermore Computing resources has some restrictions which are
described below.

Gitlab CI support is still being developed to make it more easy to use with GitHub projects. The current state is
described below.

Note: The status of checks (pass/fail, running status) for each of these tools can be viewed by clicking the appropriate
link in the check section of a pull request.

Gitlab CI

If all memmbers of a GitHub project are members of the LLNL GitHub organization and have two-factor authentication
enabled on their GitHub accounts, auto-mirroring on the Livermore Computing Collaboration Zone Gitlab server is
enabled. Thus, Gitlab CI will run automatically for those projects on pull requests that are made by project members.
Otherwise, due to Livermore Computing security policies, Gitlab CI must be launched manually by a blessed GitHub
user satisfying the constraints described above. To manually initiate Gitlab CI on a pull request, add a comment with
‘LGTM’ in it.

It is important to note that RAJA shares its Gitlab CI workflow with other projects. See Shared Gitlab CI Workflow
for more information.

Vetted Specs

The vetted compiler specs are those which we use during the RAJA Gitlab CI testing process. These can be viewed by
looking at files in the RAJA .gitlab directory. For example,

$ ls -c1 .gitlab/*jobs.yml
.gitlab/lassen-jobs.yml
.gitlab/ruby-jobs.yml

lists the yaml files containing the Gitlab CI jobs for the lassen and ruby machines.

Then, executing a command such as:

$ git grep -h "SPEC" .gitlab/ruby-jobs.yml | grep "gcc"
SPEC: "%gcc@4.9.3"
SPEC: "%gcc@6.1.0"
SPEC: "%gcc@7.3.0"
SPEC: "%gcc@8.1.0"

6.3. RAJA Developer Guide 143

https://radiuss-ci.readthedocs.io/en/latest/uberenv.html#ci

RAJA Documentation, Release 2022.03.1

will list the specs vetted on the ruby platform.

More details to come. . .

6.3.3 RAJA Build Configurations

RAJA must be built and tested with a wide range of compilers and with all of its supported back-ends. The project
currently maintains two ways to build and test important configurations in a reproducible manner:

• Build scripts. The RAJA source repository contains a collection of simple build scripts that are used to generate
build configurations for platforms in the Livermore Computing Center primarily.

• Generated host-config files. The RAJA repository includes a mechanism to generate host-config files (i.e.,
CMake cache files) using Spack.

Each of these specifies compiler versions and options, a build target (Release, Debug, etc.), RAJA features to enable
(OpenMP, CUDA, etc.), and paths to required tool chains, such as CUDA, ROCm, etc. They are described briefly in
the following sections.

RAJA Build Scripts

The build scripts in the RAJA scripts directory are used mostly by RAJA developers to quickly create a build
environment to compile and run tests during code development.

Each script is executed from the top-level RAJA directory. THe scripts for CPU-only platforms require an argument
that indicate the compiler version. For example,

$./scripts/lc-builds/toss3_clang.sh 10.0.1

Scripts for GPU-enabled platforms require three arguments: the device compiler version, followed by the compute
architecture, followed by the host compiler version. For example,

$./scripts/lc-builds/blueos_nvcc_gcc.sh 10.2.89 sm_70 8.3.1

When a script is run, it creates a uniquely-named build directory in the top-level RAJA directory and runs CMake with
arguments contained in the script to create a build environment in the new directory. One then goes into that directory
and runs make to build RAJA, its tests, example codes, etc. For example,

$./scripts/lc-builds/blueos_nvcc_gcc.sh 10.2.89 sm_70 8.3.1
$ cd build_lc_blueos-nvcc10.2.89-sm_70-gcc8.3.1
$ make -j
$ make test

Eventually, these scripts may go away and be superceded by the Spack-based host-config file generation process when
that achieves the level of compiler coverage that the scripts have.

Generated Host-Config Files

The RAJA repository contains two submodules uberenv and radiuss-spack-configs that work together to generate host-
config files. These are projects in the GitHub LLNL organization and contain utilities shared by various projects. The
main uberenv script can be used to drive Spack to generate a host-config file that contains all the information required
to define a RAJA build environment. The host-config file can then be passed to CMake using the ‘-C’ option to create a
build configuration. Spack specs defining compiler configurations are maintained in files in the radiuss-spack-configs
repository.

144 Chapter 6. RAJA Copyright and License Information

https://github.com/spack/spack
https://github.com/LLNL/uberenv
https://github.com/LLNL/radiuss-spack-configs

RAJA Documentation, Release 2022.03.1

RAJA shares its uberenv workflow with other projects. The documentation for this is available in RADIUSS Uberenv
Guide.

Generating a RAJA host-config file

This section describes the host-config file generation process for RAJA.

Machine specific configurations

Compiler configurations for Livermore computer platforms are contained in in sub-directories in the RAJA scripts/
uberenv/spack_configs directory:

$ ls -c1 ./scripts/uberenv/spack_configs
blueos_3_ppc64le_ib
darwin
toss_3_x86_64_ib
blueos_3_ppc64le_ib_p9
config.yaml

To see currently supported configurations, please see the contents of the compilers.yaml file in each of these
sub-directories.

Generating a host-config file

The main uberenv python script can be invoked from the top-level RAJA directory to generate a host-config file for a
desired configuration. For example,

$ python ./scripts/uberenv/uberenv.py --spec="%gcc@8.1.0"
$ python ./scripts/uberenv/uberenv.py --spec="%gcc@8.1.0~shared+openmp
→˓tests=benchmarks"

Each command generates a corresponding host-config file in the top-level RAJA directory. The file name contains the
platform and OS to which it applies, and the compiler and version. For example,

hc-quartz-toss_3_x86_64_ib-gcc@8.1.0-fjcjwd6ec3uen5rh6msdqujydsj74ubf.cmake

Specs that are exercised during the Gitlab CI process are found YAML files in the RAJA/.gitlab directory. See
Vetted Specs for more information.

Building RAJA with a generated host-config file

To build RAJA with one of these host-config files, create a build directory and run CMake in it by passing the host-
config file to CMake using the ‘-C’ option. Then, run make and RAJA tests, if desired, to make sure the build was
done properly:

$ mkdir <build dirname> && cd <build dirname>
$ cmake -C <path_to>/<host-config>.cmake ..
$ cmake --build -j .
$ ctest --output-on-failure -T test

It is also possible to use the configuration with a RAJA CI script outside of the normal CI process:

6.3. RAJA Developer Guide 145

https://radiuss-ci.readthedocs.io/en/latest/uberenv.html#uberenv-guide
https://radiuss-ci.readthedocs.io/en/latest/uberenv.html#uberenv-guide

RAJA Documentation, Release 2022.03.1

$ HOST_CONFIG=<path_to>/<host-config>.cmake ./scripts/gitlab/build_and_test.sh

MacOS

In RAJA, the Spack configuration for MacOS contains the default compiler corresponding to the OS version (compil-
ers.yaml), and a commented section to illustrate how to add CMake as an external package. You may install CMake
with Homebrew, for example, and follow the process outlined above after it is installed.

Reproducing Docker Builds

RAJA uses docker container images that it shares with other LLNL GitHub projects for CI testing on GitHub. Cur-
rently, we use Azure for Linux, Windows, and MacOS builds and also have Appveyor builds for Windows.

You can reproduce these builds locally for testing with the following steps:

1. Run the command to build a local Docker image:

$ DOCKER_BUILDKIT=1 docker build --target ${TARGET} --no-cache

Here, ${TARGET} is replaced with one of the names following “AS” in the RAJA Dockerfile

2. To get dropped into a terminal in the Docker image, run the following:

$ docker run -it axom/compilers:${COMPILER} /bin/bash

Here, ${COMPILER} is replaced with the compiler you want (see the aforementioned Dockerfile).

Then, you can build, run tests, edit files, etc. in the Docker image. Note that the docker command has a ‘-v’ argument
that you can use to mount your local directory in the image; e.g., -v pwd:/opt/RAJA would mount the pwd as /opt/RAJA
in the image.

6.3.4 RAJA Branch Development

Gitflow Branching Model

The RAJA project uses a simple branch development model based on Gitflow. The Gitflow model is centered around
software releases. It is a simple workflow that makes clear which branches correspond to which phases of development.
Those phases are represented explicitly in the branch names and structure of the repository. As in other branching
models, developers develop code on a local branch and push their work to a central repository.

Persistent, Protected Branches

The main and develop branches are the two primary branches we use. They always exist and are protected in the
RAJA GitHub project in that changes to them only occur as a result of approved pull requests. The distinction between
the main and develop branches is an important part of Gitflow.

• The main branch records the release history of the project. Each time the main branch is changed, a new tag
for a new code version is made. See Semantic Versioning for a description of the version numbering scheme we
use.

• The develop branch is used to integrate and test new features and most bug fixes before they are merged into the
main branch for a release.

146 Chapter 6. RAJA Copyright and License Information

https://brew.sh
https://github.com/LLNL/RAJA/blob/develop/Dockerfile
https://datasift.github.io/gitflow/IntroducingGitFlow.html

RAJA Documentation, Release 2022.03.1

Important: Development never occurs directly on the main branch or develop branch.

All other branches in the RAJA repo are temporary and are used to perform specific development tasks. When such a
branch is no longer needed (e.g., after it is merged), the branch is deleted typically.

Feature Branches

Feature branches are created off of other branches (usually develop) and are used to develop new features, bug fixes,
etc. before they are merged to develop and eventually main. Feature branches are temporary, living only as long as
they are needed to complete development tasks they contain.

Each new feature, or other well-defined portion of work, is developed on its own feature branch. We typically include
a label, such as “feature” or “bugfix”, in a feature branch name to make it clear what type of work is being done on the
branch. For example, feature/<name-of-feature> for a new feature, bugfix/<issue> for a bugfix, etc.

Important: When doing development on a feature branch, it is good practice to regularly push your changes to the
GitHub repository as a backup mechanism. Also, regularly merge the RAJA develop branch into your feature branch
so that it does not diverge too much from other development on the project. This will help reduce merge conflicts that
you must resolve when your work is ready to be merged into the RAJA develop branch.

When a portion of development is complete and ready to be merged into the develop branch, submit a pull request
(PR) for review by other team members. When all issues and comments arising in PR review discussion have been
addressed, the PR has been approved, and all continuous integration checks have passed, the pull request can be
merged.

Important: Feature branches never interact directly with the main branch.

Other Important Branches

Release candidate and hotfix branches are two other important temporary branch types in Gitflow. They will be
explained in the RAJA Release Process section.

Gitflow Illustrated

The figure below shows the basics of how branches interact in Gitflow.

6.3.5 RAJA Release Process

The RAJA release process typically involves the following sequence of steps:

1. Identify all work (features in development, outstanding PRs, etc.) to be to be included in the release.

2. Merge all PRs containing work to be included in the release into the develop branch.

3. Make a Release Candidate Branch from the develop branch. Finalize the release by completing remaining
release tasks on that branch.

4. When the release candidate branch is ready, make a PR for it to be merged into the main branch. When it is
approved and all CI checks pass, merge the release candidate branch into the RAJA main branch.

6.3. RAJA Developer Guide 147

RAJA Documentation, Release 2022.03.1

Fig. 7: This figure shows typical interactions between key branches in the Gitflow workflow. Here, development is
shown following the v0.1.0 release. While development was ongoing, a bug was found and a fix was needed to be
made available to users. A hotfix branch was made off of main and merged back to main after the issue was addressed.
Release v0.1.1 was tagged and main was merged into develop so that it would not recur. Work started on a feature
branch before the v0.1.1 release and was merged into develop after the v0.1.1 release. Then, a release candidate branch
was made from develop. The release was finalized on that branch after which it was merged into main, and the v0.2.0
release was tagged. Finally, main was merged into develop.

5. On GitHub, make a new release with a tag for the release. Following our convention, the tag label should have
the format vMM.mm.pp. See Semantic Versioning for a description of the version numbering scheme we use.
In the GitHub release description, please note key features, bugfixes, etc. in the release. These should be a
high-level summary of the contents of the RELEASE_NOTES.md file in the RAJA repo, which may contain
more detailed information. Also, add a note to the release description to remind users to download the gzipped
tarfile for the release instead of the assets GitHub creates for the release. The GitHub-created assets do not
contain the RAJA submodules and will cause issues for users as a result.

Important: For consistency, please follow a similar description pattern for all RAJA releases.

6. Check out the main branch locally and make sure it is up-to-date. Then, generate the release tarfile by running the
script ./scripts/make_release_tarball.sh from the top-level RAJA directory. If this is successful,
a gzipped tarfile whose name includes the release tag with no extraneous SHA-1 hash information will be in
the top-level RAJA directory.

7. Edit the release in GitHub and upload the tarfile to the release.

8. Make a PR to merge the main branch into the develop branch. After it passes all CI checks and is approved,
merge the PR. This will ensure that all changes done to finalize the release will not be lost in future changes to
the develop branch.

Release Candidate Branch

A release candidate branch is a temporary branch used to finalize a release. When the features, documentation, bug
fixes, etc. to include in a release are complete and merged into the develop branch, a release candidate branch is made

148 Chapter 6. RAJA Copyright and License Information

RAJA Documentation, Release 2022.03.1

off of the develop branch. Typically, a release candidate branch is named rc-<release #>. Please see RAJA Release
Process for a description of how a release candidate branch is used in the release process.

Important: Creating a release candidate branch starts the next release cycle whereby new work being performed on
feature branches can be merged into the develop branch.

Finalizing a release on a release candidate branch involves the following steps:

1. If not already done, create a section for the release in the RAJA RELEASE_NOTES.md file. Describe all
API changes, notable new features, bug fixes, improvements, build changes, etc. included in the release in
appropriately labeled sections of the file. Please follow the pattern established in the file for previous releases.
All changes that users should be aware of should be documented in the release notes. Hopefully, the release notes
file has been updated along with the corresponding changes in PRs that are merged into the develop branch. At
any rate, it is good practice to look over the commit history since the last release to ensure all important changes
are captured in the release notes.

2. Update the version number entries for the new release in the CMakeLists.txt file in the top-level
RAJA directory. These include entries for: RAJA_VERSION_MAJOR, RAJA_VERSION_MINOR, and
RAJA_VERSION_PATCHLEVEL. These items are used to define corresponding macro values in the
include/RAJA/config.hpp file when the code is built so that users can access and check the RAJA
version in their code.

3. Update the version and release fields in the docs/conf.py file to the new release number. This infor-
mation is used in the online RAJA documentation.

Important: No feature development is done on a release branch. Only bug fixes, release documentation, and
other release-oriented changes are made on a release candidate branch.

Hotfix Branch

Hotfix branches are used in the (hopefully!) rare event that a bug is found shortly after a release and which has the
potential to negatively impact RAJA users. A hotfix branch is used to address the issue and make a new release
containing only the fixed code.

A hotfix branch is made from main with the name hotfix/<issue>. The issue is fixed (hopefully quickly!) and the
release notes file is updated on the hotfix branch for the pending bugfix release. The branch is tested, against user code
if necessary, to make sure the issue is resolved. Then, a PR is made to merge the hotfix branch into main. When it is
approved and passes CI checks, it is merged into the main branch. Lastly, a new release is made in a fashion similar to
the process described in RAJA Release Process. For completeness, the key steps for performing a hotfix release are:

1. Make a hotfix branch from main for a release (hotfix/<issue>), fix the issue on the branch and verify, testing
against user code if necessary, and update the release notes file as needed.

2. When the hotfix branch is ready, make a PR for it to be merged into the main branch. When that is approved
and all CI checks pass, merge it into the RAJA main branch.

3. On GitHub, make a new release with a tag for the release. Following our convention, the tag label should
have the format vMM.mm.ppp. In the GitHub release description, note that the release is a bugfix release and
describe the issue that is resolved. Also, add a note to the release description to download the gzipped tarfile for
the release rather than one of the assets GitHub creates as part of the release.

4. Check out the main branch locally and make sure it is up-to-date. Then, generate the tarfile for the release by
running the script ./scripts/make_release_tarball.sh from the top-level RAJA directory. If this is
successful, a gzipped tarfile whose name includes the release tag with no extraneous SHA-1 hash information
will be in the top-level RAJA directory.

6.3. RAJA Developer Guide 149

RAJA Documentation, Release 2022.03.1

5. Make a PR to merge the main branch into the develop branch. After it passes all CI checks and is approved,
merge the PR. This will ensure that changes for the bugfix will be included in future development.

6.3.6 Semantic Versioning

The RAJA project uses the semantic versioning scheme for assigning release numbers. Semantic versioning is a
methodology for assigning a version number to a software release in a way that conveys specific meaning about code
modifications from version to version. See Semantic Versioning for a more detailed description.

Version Numbers and Meaning

Semantic versioning is based on a three part version number MM.mm.pp:

• MM is the major version number. It is incremented when an incompatible API change is made. That is, the
API changes in a way that may break code using an earlier release of the software with a smaller major version
number.

• mm is the minor version number. It changes when functionality is added that is backward compatible, such as
when the API grows to support new functionality yet the software will function the same as any earlier release
of the software with a smaller minor version number when used through the intersection of two different APIs.
The minor version number is always changed when the main branch changes, except possibly when the major
version is changed; for example going from v1.0.0 to v2.0.0.

• pp is the patch version number. It changes when a bug fix is made that is backward compatible. That is, such a
bug fix is an internal implementation change that fixes incorrect behavior. The patch version number is always
changed when a hotfix branch is merged into main, or when changes are made to main that only contain bug
fixes.

What Does a Change in Version Number Mean?

A key consideration in meaning for these three version numbers is that the software has a public API. Changes to the
API or code functionality are communicated by the way the version number is incremented from release to release.
Some important conventions followed when using semantic versioning are:

• Once a version of the software is released, the contents of the release must not change. If the software is
modified, it must be released with a new version.

• A major version number of zero (i.e., 0.mm.pp) is considered initial development where anything may change.
The API is not considered stable.

• Version 1.0.0 defines the first stable public API. Version number increments beyond this point depend on how
the public API changes.

• When the software is changed so that any API functionality becomes deprecated, the minor version number
must be incremented, unless the major version number changes.

• A pre-release version may be indicated by appending a hyphen and a series of dot-separated identifiers after the
patch version. For example, 1.0.1-alpha, 1.0.1-alpha.1, 1.0.2-0.2.5.

• Versions are compared using precedence that is calculated by separating major, minor, patch, and pre-release
identifiers in that order. Major, minor, and patch numbers are compared numerically from left to right. For
example, 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1. When major, minor, and patch numbers are equal, a pre-release version
number has lower precedence than none. For example, 1.0.0-alpha < 1.0.0.

By following these conventions, it is fairly easy to communicate intent of version changes to users and it should be
straightforward for users to manage dependencies on RAJA.

150 Chapter 6. RAJA Copyright and License Information

http://semver.org

RAJA Documentation, Release 2022.03.1

6.4 RAJA Copyright and License Information

Copyright (c) 2016-22, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory.

All rights reserved. See additional details below.

Unlimited Open Source - BSD Distribution

LLNL-CODE-689114

OCEC-16-063

6.4.1 RAJA License

Copyright (c) 2016-2022, Lawrence Livermore National Security, LLC. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Department of Energy (DOE). This work
was produced at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Security, LLC nor any of their employees,
makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services by trade name, trademark, man-
ufacturer or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

6.4. RAJA Copyright and License Information 151

	Background and Motivation
	Git Repository and Issue Tracking
	Communicating with the RAJA Team
	RAJA User Documentation
	RAJA Developer Documentation
	RAJA Copyright and License Information
	RAJA User Guide
	Doxygen
	RAJA Developer Guide
	RAJA Copyright and License Information

